满分5 > 初中数学试题 >

如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一...

如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据题意作辅助线过点B作BC⊥y轴于点C,根据等边三角形的性质即可求出点B的坐标, (2)根据∠PAQ=∠OAB=60°,可知∠PAO=∠QAB,得出△APO≌△AQB总成立,得出当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°, (3)根据点P在x的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果. (1)【解析】 过点B作BC⊥y轴于点C, ∵A(0,2),△AOB为等边三角形, ∴AB=OB=2,∠BAO=60°, ∴BC=,OC=AC=1, 即B(); (2)证明:当点P在x轴上运动(P不与O重合)时,不失一般性, ∵∠PAQ=∠OAB=60°, ∴∠PAO=∠QAB, 在△APO和△AQB中, ∵AP=AQ,∠PAO=∠QAB,AO=AB ∴△APO≌△AQB总成立, ∴∠ABQ=∠AOP=90°总成立, ∴当点P在x轴上运动(P不与O重合)时,∠ABQ为定值90°; (3)【解析】 由(2)可知,点Q总在过点B且与AB垂直的直线上,可见AO与BQ不平行. ①当点P在x轴负半轴上时,点Q在点B的下方, 此时,若AB∥OQ,四边形AOQB即是梯形, 当AB∥OQ时,∠BQO=90°,∠BOQ=∠ABO=60°. 又OB=OA=2,可求得BQ=, 由(2)可知,△APO≌△AQB, ∴OP=BQ=, ∴此时P的坐标为(). ②当点P在x轴正半轴上时,点Q在B的上方, 此时,若AQ∥OB,四边形AOBQ即是梯形, 当AQ∥OB时,∠ABQ=90°,∠QAB=∠ABO=60°. 又AB=2,可求得BQ=, 由(2)可知,△APO≌△AQB, ∴OP=BQ=, ∴此时P的坐标为(). 综上,P的坐标为()或().
复制答案
考点分析:
相关试题推荐
如图,已知抛物线manfen5.com 满分网经过点(-2,0),与y轴交于A点,与x轴交于B、C两点.
(1)求b的值;
(2)设以线段BC为直径的圆的圆心为点D,试判断点A与⊙D的位置关系,并说明理由;
(3)设P是抛物线上一个动点,且点P位于第一象限内,求当四边形PAOC的面积最大时,求点P的坐标.

manfen5.com 满分网 查看答案
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=3.5,AD=4,AF=2.8,求平行四边形ABCD的面积.

manfen5.com 满分网 查看答案
由于电力紧张,某地决定对工厂实行“峰谷”用电.规定:在每天的8:00至22:00为“峰电”期,电价为a元/度;每天22:00至8:00为“谷电”期,电价为b元/度.下表为某厂4、5月份的用电量和电费的情况统计表:
月份用电量(万度)电费(万元)
4126.4
5168.8
(1)若4月份“峰电”的用电量为8万度,5月份“峰电”的用电量为12万度,求a、b的值.
(2)若6月份该厂预计用电20万度,要使该月电费不超过10.6万元,那么该厂6月份在“峰电”的用电量至多为多少度?
查看答案
为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.
(1)本次抽测的男生有______人,抽测成绩的众数是______
(2)请你将图2的统计图补充完整;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?
manfen5.com 满分网
查看答案
某教室的开关控制板上有四个外形完全相同的开关,其中两个分别控制A、B两盏电灯,另两个分别控制C、D两个吊扇.已知电灯、吊扇均正常,且处于不工作状态,开关与电灯、电扇的对应关系未知.
(1)若四个开关均正常,则任意按下一个开关,正好一盏灯亮的概率是多少?
(2)若其中一个控制电灯的开关坏了,则任意按下两个开关,正好一盏灯亮和一个扇转的概率是多少?请用树状图法或列表法加以说明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.