满分5 > 初中数学试题 >

如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B...

如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标为(3,0)
manfen5.com 满分网
(1)求抛物线的解析式;
(2)如图2,设E是抛物线上在第一象限内的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.
(1)设抛物线的解析式为:y=a(x-1)2+4,然后将点B的坐标代入函数解析式即可求得此抛物线的解析式; (2)设E点坐标为(n,-n2+2n+3),抛物线对称轴为x=1,根据2|n-1|=EF,列方程求解; (3)首先设M的坐标为(a,0),求得BD与DM的长,由平行线分线段成比例定理,求得MN的长,然后由相似三角形对应边成比例,即可得DM2=BD•MN,则可得到关于a的一元二次方程,解方程即可求得答案. 【解析】 (1)设抛物线的解析式为:y=a(x-1)2+4, ∵点B的坐标为(3,0). ∴4a+4=0, ∴a=-1, ∴此抛物线的解析式为:y=-(x-1)2+4=-x2+2x+3; (2)设E点坐标为(n,-n2+2n+3),抛物线对称轴为x=1, 由2(n-1)=EF,得2(n-1)=-(-n2+2n+3)或2(n-1)=-n2+2n+3, 解得n=2±或n= ∵n>0, ∴n=2+或n=, 边长EF=2(n-1)=2+2或2-2; (3)存在. 过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD, ∵BD==3,设M(c,0), ∵MN∥BD, ∴=, 即=, ∴MN=(1+c),DM=, 要使△DNM∽△BMD, 需=,即DM2=BD•MN, 可得:9+c2=3×(1+c), 解得:c=或c=3(舍去). 当x=时,y=-(-1)2+4=. 故存在,点T的坐标为(,).
复制答案
考点分析:
相关试题推荐
如图,已知CD是⊙O的直径,AC⊥CD,垂足为C,弦DE∥OA,直线AE,CD相交于点B.
(1)求证:直线AB是⊙O的切线;
(2)如果AC=1,BE=2,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次 性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
货运收费项目及收费标准表
运输工具运输费单价
元/
冷藏费单价
元/
固定费用
元/次
汽车25200
火车1.652280
(1)汽车的速度为______千米/时,火车的速度为______千米/时:
(2)设每天用汽车和火车运输的总费用分别为y(元)和y(元),分别求y、y与 x的函数关系式(不必写出x的取值范围),及x为何值时y>y (总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?

manfen5.com 满分网 manfen5.com 满分网 查看答案
小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=manfen5.com 满分网,sinA′=manfen5.com 满分网
(1)求此重物在水平方向移动的距离BC;
(2)求此重物在竖直方向移动的距离B′C.(结果保留根号)

manfen5.com 满分网 查看答案
图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:
manfen5.com 满分网
(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;
(2)商场服装部5月份的销售额是多少万元?
(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.
查看答案
如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.