如图,由于将△AOB绕原点O顺时针旋转后得到△A'OB′.当点A′恰好落在AB上时,根据旋转的旋转知道A'O=AO,而∠ABO=30°,由此得到∠A=60°,所以是将△AOB绕原点O顺时针旋转60°后得到△A'OB′,由此可以求∠B'OC=30°,而AO=2,可以求出OB′=OB=2,过B′作B′C⊥OC于C,解直角三角形B′OC即可求出点B′的坐标.
【解析】
如图,∵将△AOB绕原点O顺时针旋转后得到△A'OB′,
当点A′恰好落在AB上时,
∴A'O=AO,
而∠ABO=30°,
∴∠A=60°,
∴△A'OA是等边三角形,
∴是将△AOB绕原点O顺时针旋转60°后得到△A'OB′,
∴∠B'OC=30°,
而AO=2,
∴OB′=OB=2,
过B′作B′C⊥OC于C,
∴B′C=,OC=3,
∴点B′的坐标为.
故填空答案:.