满分5 > 初中数学试题 >

在平面直角坐标系中,抛物线经过A(-1,0)、B(4,0)、C(0,2)三点. ...

在平面直角坐标系中,抛物线经过A(-1,0)、B(4,0)、C(0,2)三点.
(1)求此抛物线的解析式.
(2)点D是该抛物线在第一象限内的一个动点,求当四边形ABDC面积最大时点D的坐标.
(3)在(2)的条件下,过点D的直线与过B、C两点的直线平行,证明直线与过A、B、C三点的抛物线只有一个交点.

manfen5.com 满分网
(1)已知抛物线图象上三个不同点的坐标,利用待定系数法即可确定该函数的解析式. (2)由图象不难看出,△ABC的面积是一定的,所以只需看△CBD的面积和点D的横坐标之间的关系;过点D作x轴的垂线,交直线BC于点F,已知直线BC和抛物线的解析式,可由点D的横坐标求出点D、F的纵坐标,它们的差就是线段DF的长,以DF为底、OB为高可求出△BCD的面积表达式,再根据所得函数的性质即可确定△BCD的面积最大时(即四边形ABDC的面积最大时)点D的坐标. (3)设过点D的直线与y轴的交点为G,当DG∥BC时,四边形DFCG是个平行四边形,此时DF=GC,由此确定点G的坐标,进而由待定系数法确定出直线DG的解析式,联立直线DG和抛物线的解析式,消去y后,判断所得一元二次方程的根的判别式是否为0即可. 【解析】 (1)设所求抛物线为y=a(x-x1)(x-x2) ∴该抛物线经过点A(-1,0)、B(4,0) ∴y=a(x-+1)(x-4) ∵抛物线经过点C(0,2) ∴2=-4a ∴a= ∴y=. (2)∵点D在抛物线上 ∴D() 过点D作DE⊥X轴,交BC于点F ∵过BC的直线为y= ∴F ∴DF= ∴S四边形ABDC=S△ABC+S△BCD= ∴当a=2时,S最大值等于9 ∴D(2,3). (3)∵过点D的直线l∥BC交y轴于点G ∵四边形CFDG是平行四边形 ∴DF=CG=2 ∴G(0,4) ∴直线:y= ∴= ∴x2-4x+4=0 ∴△=16-16=0 ∴直线与抛物线只有一个交点.
复制答案
考点分析:
相关试题推荐
如图一,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.
(1)求证:∠CAD=∠BAC;
(2)如图二,若把直线EF向上移动,使得EF与⊙O相交于G,C两点(点C在点G的右侧),连接AC,AG,若题中其他条件不变,这时图中是否存在与∠CAD相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.
manfen5.com 满分网
查看答案
某体育用品商场预测某品牌运动鞋能够畅销,就用32000元购进了一批这种运动鞋,上市后很快脱销,商场又用68000元购进第二批这种运动鞋,所购数量是第一批购进数量的2倍,但每双进价多了10元.
(1)该商场第一次购进这种运动鞋多少双?
(2)如果这两批运动鞋每双的售价相同,且全部售完后总利润率不低于20%,那么每双售价至少是多少元?
查看答案
如图,已知直线l1:y=2x+3,直线l2:y=-x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.
(1)求A、B、C三点坐标;
(2)求△ABC的面积.

manfen5.com 满分网 查看答案
某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:
视力频数(人)频率
4.0≤x<4.3200.1
4.3≤x<4.6400.2
4.6≤x<4.9700.35
4.9≤x<5.2a0.3
5.2≤x<5.510b
(1)在频数分布表中,a的值为______,b的值为______,并将频数分布直方图补充完整;
(2)甲同学说:“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围?
(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是______;并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?

manfen5.com 满分网 查看答案
如图,一架飞机在空中P处探测到某高山山顶D处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB的方向匀速飞行,飞行10秒到山顶D的正上方C处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.