如图1的矩形包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.
(1)如图2,《思维游戏》这本书的长为21cm,宽为15cm,厚为1cm,现有一张面积为875cm
2的矩形纸包好了这本书,展开后如图1所示.求折叠进去的宽度;
(2)若有一张长为60cm,宽为50cm的矩形包书纸,包2本如图2中的书,书的边缘与包书纸的边缘平行,裁剪包好展开后均如图1所示.问折叠进去的宽度最大是多少?
考点分析:
相关试题推荐
在学习了投影知识后,小明同学想能否利用投影的知识来测量斜坡的坡角呢?经过思考小明和他的小组成员采用了以下测量步骤:
(1)如图,在平地和斜坡上各直立一根等长的标杆AB、DE(均与地面垂直),AB在平地上的影长为BC,
(2)在同一时刻分别测量平地上标杆AB的影长BC,斜坡上标杆DE的影长EF,
问题:
(1)请画出在同一时刻标杆DE在山坡上的影长EF(不需尺规作图,只要作出适当的标记)
(2)若标杆AB、DE的长均为2米,测得AB的影长BC为1米,DE的影长EF为2米,求斜坡的坡角α(精确到1°)
查看答案
某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:
其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:
测试项目 | 测试成绩/分 |
甲 | 乙 | 丙 |
笔试 | 92 | 90 | 95 |
面试 | 85 | 95 | 80 |
图二是某同学根据上表绘制的一个不完全的条形图.
请你根据以上信息解答下列问题:
(1)补全图一和图二;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
查看答案
不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为
.
(1)试求袋中蓝球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.
查看答案
如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.
查看答案
解方程和不等式
(1)
+
=2
(2)解不等式组:
.
查看答案