满分5 > 初中数学试题 >

(1)把二次函数y=-x2+x+代成y=a(x-h)2+k的形式; (2)写出抛...

(1)把二次函数y=-manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网代成y=a(x-h)2+k的形式;
(2)写出抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网的顶点坐标和对称轴,并说明该抛物线是由哪一条形如y=ax2的抛物线经过怎样的变换得到的;
(3)如果抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网中,x的取值范围是0≤x≤3,请画出图象,并试着给该抛物线编一个具有实际意义的情境.(如喷水、掷物、投篮等)
(1)利用配方法时注意要先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,可把一般式转化为顶点式; (2)直接利用顶点式的特点写出顶点坐标即可.利用图形变换的特点直接求得是由抛物线向右平移1个单位,再向上平移3个单位得到的; (3)根据范围画图,切合实际意义的题目即可. 【解析】 (1)y=-x2+x+= -(x2-2x)+ =-(x2-2x+1-1)+ =-(x-1)2+3; (2)由上式可知抛物线的顶点坐标为(1,3),其对称轴为直线x=1, 该抛物线是由抛物线y=-x2向右平移1个单位,再向上平移3个单位(或向上平移3个单位,再向右平移1个单位)得到的; (3)抛物线与x轴交于(3,0),与y轴交于(0,),顶点为(1,3),把这三个点用平滑的曲线连接起来就得到抛物线在0≤x≤3的图象(如图所示). 情境示例:小明在平台上,从离地面2.25米处抛出一物体,落在离平台底部水平距离为3米的地面上,物体离地面的最大高度为3米. (学生叙述的情境只要符合所画出的抛物线即可)
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).
(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.

manfen5.com 满分网 查看答案
如图,某船以每小时36海里的速度向正东方向航行,在点A测得某岛C在北偏东60°方向上,航行半小时后到达点B测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁.
(1)说明点B是否在暗礁区域内;
(2)若继续向东航行有无触礁的危险?请说明理由.

manfen5.com 满分网 查看答案
某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价(x)定为多少元时,才能使每天所赚的利润(y)最大并求出最大利润.
查看答案
某商店经销一种销售成本为每千克40元的水产品.根据市场分析,若按每千克50元销售,一个月能销售500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x之间的函数关系式;
(3)当销售单价定为每千克多少元时,月销售利润最大,最大利润是多少?
查看答案
如图,河对岸有一铁塔AB.在C处测得塔顶A的仰角为30°,向塔前进16米到达D,在D处测得A的仰角为45°,求铁塔AB的高.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.