满分5 > 初中数学试题 >

(1)操作发现: 如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得...

(1)操作发现:
如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决:
保持(1)中的条件不变,若DC=2DF,求manfen5.com 满分网的值;
(3)类比探求:
保持(1)中条件不变,若DC=nDF,求manfen5.com 满分网的值.

manfen5.com 满分网
(1)求简单的线段相等,可证线段所在的三角形全等,即连接EF,证△EGF≌△EDF即可; (2)可设DF=x,BC=y;进而可用x表示出DC、AB的长,根据折叠的性质知AB=BG,即可得到BG的表达式,由(1)证得GF=DF,那么GF=x,由此可求出BF的表达式,进而可在Rt△BFC中,根据勾股定理求出x、y的比例关系,即可得到的值; (3)方法同(2). 【解析】 (1)同意,连接EF, 则根据翻折不变性得, ∠EGF=∠D=90°,EG=AE=ED,EF=EF, ∴Rt△EGF≌Rt△EDF, ∴GF=DF; (2)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y ∵DC=2DF, ∴CF=x,DC=AB=BG=2x, ∴BF=BG+GF=3x; 在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2 ∴y=2x, ∴; (3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y ∵DC=n•DF, ∴BF=BG+GF=(n+1)x 在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2 ∴y=2x, ∴或.
复制答案
考点分析:
相关试题推荐
某生态示范园要对1号、2号、3号、4号四个品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出)manfen5.com 满分网
(1)实验所用的2号果树幼苗的数量是______株;
(2)请求出3号果树幼苗的成活数,并把图2的统计图补充完整;
(3)你认为应选哪一种品种进行推广?请通过计算说明理由.
查看答案
如图,在一次数学课外实践活动中,要求测教学楼的高度AB、小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达E,又测得教学楼顶端A的仰角为60°.求这幢教学楼的高度AB.

manfen5.com 满分网 查看答案
 如图,AB为⊙O的弦,C为劣弧AB的中点.
(1)若⊙O的半径为5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断AD与⊙O的位置关系,并说明理由.

manfen5.com 满分网 查看答案
端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子.
(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;
(2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由.

manfen5.com 满分网 查看答案
如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E.DF平分∠ADC交BC于F.
(1)求证:△ABE≌△CDF;
(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.