满分5 > 初中数学试题 >

我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”...

manfen5.com 满分网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数. (2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式. (3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k. 【解析】 (1)根据题意可得:A(-1,0),B(3,0); 则设抛物线的解析式为y=a(x+1)(x-3)(a≠0), 又∵点D(0,-3)在抛物线上, ∴a(0+1)(0-3)=-3,解之得:a=1 ∴y=x2-2x-3(3分) 自变量范围:-1≤x≤3(4分) (2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM, 在Rt△MOC中, ∵OM=1,CM=2, ∴∠CMO=60°,OC= 在Rt△MCE中, ∵MC=2,∠CMO=60°, ∴ME=4 ∴点C、E的坐标分别为(0,),(-3,0)(6分) ∴切线CE的解析式为(8分) (3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0)(9分) 由题意可知方程组只有一组解 即kx-3=x2-2x-3有两个相等实根, ∴k=-2(11分) ∴过点D“蛋圆”切线的解析式y=-2x-3.(12分)
复制答案
考点分析:
相关试题推荐
为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:
manfen5.com 满分网
“限塑令”实施后,塑料购物袋使用后的处理方式统计表:
处理方式直接丢弃直接做垃圾袋再次购物使用其它
选该项的人数占
总人数的百分比
5%35%49%11%
请你根据以上信息解答下列问题:
(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?
(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.
查看答案
今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线统计图和频数、频率分布表如下:
x表示50户居民总用水量(m3
 组别频数 频率 
350<x≤400 1manfen5.com 满分网 
 400<x≤450 1 manfen5.com 满分网
 450<x≤500 2 manfen5.com 满分网
 500<x≤550 a b
 550<x≤600 c
 600<x≤650 1 manfen5.com 满分网
650<x≤700  2 manfen5.com 满分网
(1)表中a=______,d=______
(2)这50户居民每月总用水量超过550m3的月份占全年月份的百分率是多少(精确到1%)?
(3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中a=2.
查看答案
解方程:(1)x2-6x+9=(5-2x)2       
(2)manfen5.com 满分网+manfen5.com 满分网-6=0.
查看答案
计算:|3-manfen5.com 满分网|+manfen5.com 满分网+cos230°-4sin60°+(-120
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.