满分5 > 初中数学试题 >

如图,△ABC内接于⊙O,且∠B=60°.过点C作圆的切线l与直径AD的延长线交...

如图,△ABC内接于⊙O,且∠B=60°.过点C作圆的切线l与直径AD的延长线交于点E,AF⊥l,垂足为F,CG⊥AD,垂足为G.
(1)求证:△ACF≌△ACG;
(2)若AF=4manfen5.com 满分网,求图中阴影部分的面积.

manfen5.com 满分网
(1)连接CD,OC.根据圆周角定理的推论求得ADC=∠B=60°,根据直径所对的圆周角是直角得AC⊥CD,则根据等角的余角相等得到∠ACG=∠ADC=60°,从而得到△OCD为正三角形,进一步求得∠ECD=30°,证明∠ACF=∠ACG=60°.最后根据AAS即可证明三角形全等; (2)结合图形,可以把阴影部分的面积转化为三角形COE的面积减去扇形OCD的面积.根据30°的直角三角形的性质即可求得OC、CE的长,从而求解. (1)证明:如图,连接CD,OC,则∠ADC=∠B=60°. ∵AD是圆的直径, ∴∠ACD=90° 又∵∠ADC=∠B=60° ∴∠CAD=30° ∵EF与圆相切, ∴∠FCA=∠ADC=60° ∴直角△ACF中,∠FAC=30°, ∴∠FAC=∠CAD, 又∵CG⊥AD,AF⊥EF ∴FC=CG 则在△ACF和△ACG中: ∴△ACF≌△ACG(AAS). (2)【解析】 在Rt△ACF中,∠ACF=60°,AF=4, ∴∠FAC=30°, ∴FC=AC, 设FC=x,则AC=2x, (2x)2-x2=(4)2, 解得:x=4, ∴CF=4. 在Rt△OCG中,∠COG=60°,CG=CF=4,得OC==. 在Rt△CEO中,OE=. 于是S阴影=S△CEO-S扇形COD==-=.
复制答案
考点分析:
相关试题推荐
如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2面积为S1,四边形P2M2N2N3的面积为S2,…,四边形PnMnNnNn+1的面积为Sn,通过逐一计算S1,S2,…,可得Sn=   
manfen5.com 满分网 查看答案
正六边形ABCDEF的边长为2cm,点P为这个正六边形内部的一个动点,则点P到这个正六边形各边的距离之和为    cm.
manfen5.com 满分网 查看答案
某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
查看答案
电视台在南充城市某居民小区对电视节目的收视情况进行抽样调查,每人只能在被调查的五类电视节目中选择一类“最喜欢”的电视节目,将统计结果绘制了两幅不完整的统计图.请根据图中信息解答问题:
(1)这次抽样调查了多少人?
(2)在扇形统计图中,最喜欢娱乐节目对应的圆心角比最喜欢戏曲节目对应的圆心角大90°,调查中最喜欢娱乐节目比最喜欢戏曲节目的多多少人?
(3)估计南充城区有100万人中最喜欢体育节目的有多少人?manfen5.com 满分网
查看答案
A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).
(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.
(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.