满分5 > 初中数学试题 >

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC...

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

manfen5.com 满分网
(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线; (2)过O作OF⊥AB,则OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长. (1)证明:连接OC ∵OA=OC ∴∠OCA=∠OAC ∵AC平分∠PAE ∴∠DAC=∠CAO ∴∠DAC=∠OCA ∴PB∥OC ∵CD⊥PA ∴CD⊥OC,CO为⊙O半径, ∴CD为⊙O的切线; (2)【解析】 过O作OF⊥AB,垂足为F, ∴∠OCD=∠CDA=∠OFD=90°, ∴四边形DCOF为矩形, ∴OC=FD,OF=CD. ∵DC+DA=6, 设AD=x,则OF=CD=6-x, ∵⊙O的直径为10, ∴DF=OC=5, ∴AF=5-x, 在Rt△AOF中,由勾股定理得AF2+OF2=OA2. 即(5-x)2+(6-x)2=25, 化简得x2-11x+18=0, 解得x1=2,x2=9. ∵CD=6-x大于0,故x=9舍去, ∴x=2, 从而AD=2,AF=5-2=3, ∵OF⊥AB,由垂径定理知,F为AB的中点, ∴AB=2AF=6.
复制答案
考点分析:
相关试题推荐
已知:如图,四边形ABCD中,BC=CD=DB,∠ADB=90°,sin∠ABD=manfen5.com 满分网,S△BCD=manfen5.com 满分网.求四边形ABCD的周长.

manfen5.com 满分网 查看答案
列方程或方程组解应用题
某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天修的桌凳套数是甲小组的1.5倍.求甲、乙两个木工小组每天各修桌凳多少套?
查看答案
如图,已知反比例函数y=manfen5.com 满分网(x>0)的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.
(1)求一次函数的解析式;
(2)结合图象回答:反比例函数的值大于一次函数的值时x的取值范围.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知:如图,点E、F分别为▱ABCD的BC、AD边上的点,且∠1=∠2.
求证:AE=FC.
查看答案
已知:x=3,求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.