满分5 > 初中数学试题 >

已知抛物线y=ax2+x+2. (1)当a=-1时,求此抛物线的顶点坐标和对称轴...

已知抛物线y=ax2+x+2.
(1)当a=-1时,求此抛物线的顶点坐标和对称轴;
(2)若代数式-x2+x+2的值为正整数,求x的值;
(3)当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0).若点M在点N的左边,试比较a1与a2的大小.
(1)将a的值代入抛物线中,即可求出抛物线的解析式,用配方法或公式法可求出抛物线的顶点坐标和对称轴解析式. (2)可先得出y的值,然后解方程求解即可. (3)可将M、N的坐标分别代入抛物线中,得出a1、a2的表达式,然后令a1-a2进行判断即可. 【解析】 (1)当a=-1时,y=-x2+x+2=-(x-)2+ ∴抛物线的顶点坐标为:(,),对称轴为x=; (2)∵代数式-x2+x+2的值为正整数, -x2+x+2=-(x-)2+2≤2, ∴-x2+x+2=1,解得x=, 或-x2+x+2=2,解得x=0或1. ∴x的值为,,0,1; (3)将M代入抛物线的解析式中可得:a1m2+m+2=0; ∴a1=; 同理可得a2=-; a1-a2=, ∵m在n的左边, ∴m-n<0, ∵0<m<n, ∴a1-a2=<0, ∴a1<a2.
复制答案
考点分析:
相关试题推荐
数学课上,同学们探究发现:如图1,顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.并且对其进行了证明.
(1)证明后,小乔又发现:下面两个等腰三角形如图2、图3也具有这种特性.请你在图2、图3中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所画等腰三角形两个底角的度数;
manfen5.com 满分网
(2)接着,小乔又发现:直角三角形和一些非等腰三角形也具有这样的特性,如:直角三角形斜边上的中线可以把它分成两个小等腰三角形.请你画出一个具有这种特性的三角形的示意图,并在图中标出此三角形的各内角的度数.(说明:要求画出的既不是等腰三角形,也不是直角三角形.)
查看答案
从甲学校到乙学校有A1、A2、A3三条线路,从乙学校到丙学校有B1、B2二条线路.
(1)利用树状图或列表的方法表示从甲学校到丙学校的线路中所有可能出现的结果;
(2)小张任意走了一条从甲学校到丙学校的线路,求小张恰好经过了B1线路的概率是多少?
查看答案
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

manfen5.com 满分网 查看答案
已知:如图,四边形ABCD中,BC=CD=DB,∠ADB=90°,sin∠ABD=manfen5.com 满分网,S△BCD=manfen5.com 满分网.求四边形ABCD的周长.

manfen5.com 满分网 查看答案
列方程或方程组解应用题
某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天修的桌凳套数是甲小组的1.5倍.求甲、乙两个木工小组每天各修桌凳多少套?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.