考点分析:
相关试题推荐
如图,在平面直角坐标系中,将直线y=
x-
沿x轴翻折,得到一条新直线与x轴交于点A,与y轴交于点B,将抛物线
沿x轴平移,得到一条新抛物线与y轴交点于点C,与直线AB交于点E、F.
(1)求直线AB的解析式;
(2)若线段CF∥x轴,求平移后抛物线的解析式;
(3)在(2)的条件下,若点F在y轴右侧,过F作FH⊥x轴于点G,与直线y=
x-
交点H.是否存在不过△AFH顶点同时平分△AFH的周长和面积的直线l?若存在,求直线l的解析式;若不存在,请说明理由.
查看答案
我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.
(1)求y与x的函数关系式;
(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)
查看答案
如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AB的长;
(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;
(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由.
查看答案
如图所示,MN是⊙O的切线,B为切点,BC是⊙O的弦且∠CBN=45°,过C的直线与⊙O,MN分别交于A,D两点,过C作CE⊥BD于点E.
(1)求证:CE是⊙O的切线;
(2)若∠D=30°,BD=2+2
,求⊙O的半径r.
查看答案
某中学为了培养学生的社会实践能力,今年“五•一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图.(收入取整数,单位:元)
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)这50个家庭收入的中位数落在______小组;
(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?
分 组 | 频 数 | 频 率 |
1000~1200 | 3 | 0.060 |
1200~1400 | 12 | 0.240 |
1400~1600 | 18 | 0.360 |
1600~1800 | | 0.200 |
1800~2000 | 5 | |
2000~2200 | 2 | 0.040 |
合计 | 50 | 1.000 |
查看答案