根据题中所给的条件,在直角三角形中解题,根据角边之间的关系解出所求边长.
【解析】
过A、D两点分别作AE⊥BC,DF⊥BC,垂足为E、F.
∵梯形ABCD,∴AD∥BC,
又∵AE⊥BC,DF⊥BC,
∴AE∥DF,∴四边形AEFD是矩形.
∴AD=EF,AE=DF=2.
又∵等腰梯形ABCD,∴AB=CD,∠B=∠C,
∴△ABE≌△DCF,∴BE=CF.
∵在Rt△ABE中,cotB=,
∴BE=AEcotB=2cot44°,
∴BC=2BE+AD=4cot44°+4≈8.1.
答:梯形底边BC的长为8.1.