(1)首先由平行四边形的性质可得AB∥CD,AB=CD;∠A=∠C,∠ABC=∠CDA,再由条件∠ABC的平分线交AD于E,∠CDA的平分线交BC于F可得∠ABE=∠ABC,∠CDF=∠CDA,进而得到∠ABE=∠CDF,再利用ASA定理可判定△ABE≌△CDF;
(2)首先根据△ABE≌△CDF可得AE=CF,再根据平行四边形的性质可得AD=CB,AD∥BC,进而得到DE=BF且DE∥BF,根据一组对边平行且相等的四边形是平行四边可证出四边形BFDE是平行四边形,再根据平行四边形对角线互相平分可证出结论.
(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠A=∠C,∠ABC=∠CDA,
∵BE平分∠ABC,DF平分∠CDA,
∴∠ABE=∠ABC,∠CDF=∠CDA.
∴∠ABE=∠CDF,
再△ABE和△CDF中,
∴△ABE≌△CDF(ASA).
(2)证明:连接EF、DB,
∵△ABE≌△CDF,
∴AE=CF,
∵四边形ABCD是平行四边形,
∴AD=CB,AD∥BC,
∴DE=BF且DE∥BF.
∴四边形BFDE是平行四边形,
∴EF与BD互相平分.