某书店正在销售一种课外读本,进价12元/本,售价20元/本,为了促销,书店决定凡是一次购买10本以上的客户,每多买一本,售价就降低0.10元,但最低价为16元/本.
(1)客户一次至少买多少本,才能以最低价购买?
(2)求当一次购买x本时(x>10),书店利润y(元)与购买量x(本)之间的函数关系式;
(3)在销售过程中,书店发现卖出50本比卖出46本赚的钱少,为了使每次的销售均能达到多卖出就多获利,在其他促销条件不变的情况下,最低价应确定为多少元/本?请说明理由.
考点分析:
相关试题推荐
如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕着点O顺时针旋转180°,试解决下列问题:
(1)画出四边形ABCD旋转后的图形;
(2)求点C旋转过程所经过的路径长;
(3)设点B旋转后的对应点为B′,求tan∠DAB′的值.
查看答案
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
(2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
查看答案
某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题:
(1)参加调查的学生共有______人,在扇形图中,表示“其他球类”的扇形的圆心角为______度;
(2)将条形图补充完整;
(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有______人.
查看答案
已知:如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为点E,点F在BD上,连接AF、EF.
(1)求证:AD=ED;
(2)如果AF∥CD,求证:四边形ADEF是菱形.
查看答案
已知:如图,▱ABCD中,∠ABC的平分线交AD于E,∠CDA的平分线交BC于F.
(1)求证:△ABE≌△CDF;
(2)连接EF、BD,求证:EF与BD互相平分.
查看答案