满分5 > 初中数学试题 >

如图,已知抛物线过点A(0,6),B(2,0),C(7,). (1)求抛物线的解...

如图,已知抛物线过点A(0,6),B(2,0),C(7,manfen5.com 满分网).
(1)求抛物线的解析式;
(2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE;
(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似?若有请求出所有符和条件的点P的坐标;若没有,请说明理由.

manfen5.com 满分网
(1)设抛物线解析式为y=ax2+bx+c,将A、B、C三点坐标代入,列方程组求抛物线解析式; (2)求直线AC的解析式,确定E点坐标,根据对称性求F点坐标,分别求直线AF,CF的解析式,确定两直线与x轴的交点坐标,判断两个交点关于抛物线对称轴对称即可; (3)存在.由∠CFE=∠AFE=∠FAP,△AFP与△FDC相似时,顶点A与顶点F对应,根据△AFP∽△FDC,△AFP∽△FCD,两种情况求P点坐标. (1)【解析】 设抛物线解析式为y=ax2+bx+c,将A、B、C三点坐标代入,得 , 解得, ∴抛物线解析式为y=x2-4x+6; (2)证明:设直线AC的解析式y=mx+n, 将A、C两点坐标代入,得, 解得, ∴y=-x+6, ∵y=x2-4x+6=(x-4)2-2, ∴D(4,-2),E(4,4), ∵F与E关于D对称, ∴F(4,-8),则直线AF的解析式为y=-x+6,CF的解析式为y=x-22, ∴直线AF,CF与x轴的交点坐标分别为(,0),(,0), ∵4-=-4, ∴两个交点关于抛物线对称轴x=4对称, ∴∠CFE=∠AFE; (3)【解析】 存在. 设P(0,d),则AP=|6-d|,AF==2, FD=-2-(-8)=6,CF==, ∵∠PAF=∠CFD, ∴点P位于点A的下方, 当△AFP∽△FDC时,=,即=,解得d=(舍去)或-, 当△AFP∽△FCD时,=,即=,解得d=-2或14(舍去), ∴P点坐标为(0,-)或(0,-2).
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,AB=AC=10,BC=16,M为BC的中点.⊙A的半径为3,动点O从点B出发沿BC方向以每秒1个单位的速度向点C运动,设运动时间为t秒.
(1)当以OB为半径的⊙O与⊙A相切时,求t的值;
(2)探究:在线段BC上是否存在点O,使得⊙O与直线AM相切,且与⊙A相外切?若存在,求出此时t的值及相应的⊙O的半径;若不存在,请说明理由.

manfen5.com 满分网 查看答案
七年级我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:
如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.
我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB'.因此,求AP+BP最小就相当于求AP+PB′最小,显然当A、P、B′在一条直线上时AP+PB′最小,因此连接AB',与直线l的交点就是要求的点P.
有很多问题都可用类似的方法去思考解决.
探究:
(1)如图3,正方形ABCD的边长为2,E为BC的中点,P是BD上一动点.连接EP,CP,则EP+CP的最小值是______
查看答案
某书店正在销售一种课外读本,进价12元/本,售价20元/本,为了促销,书店决定凡是一次购买10本以上的客户,每多买一本,售价就降低0.10元,但最低价为16元/本.
(1)客户一次至少买多少本,才能以最低价购买?
(2)求当一次购买x本时(x>10),书店利润y(元)与购买量x(本)之间的函数关系式;
(3)在销售过程中,书店发现卖出50本比卖出46本赚的钱少,为了使每次的销售均能达到多卖出就多获利,在其他促销条件不变的情况下,最低价应确定为多少元/本?请说明理由.
查看答案
如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕着点O顺时针旋转180°,试解决下列问题:
(1)画出四边形ABCD旋转后的图形;
(2)求点C旋转过程所经过的路径长;
(3)设点B旋转后的对应点为B′,求tan∠DAB′的值.

manfen5.com 满分网 查看答案
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
(2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.