考点分析:
相关试题推荐
实数4的相反数是( )
A.±4
B.4
C.
D.-4
查看答案
如图,已知抛物线过点A(0,6),B(2,0),C(7,
).
(1)求抛物线的解析式;
(2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE;
(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似?若有请求出所有符和条件的点P的坐标;若没有,请说明理由.
查看答案
如图,在△ABC中,AB=AC=10,BC=16,M为BC的中点.⊙A的半径为3,动点O从点B出发沿BC方向以每秒1个单位的速度向点C运动,设运动时间为t秒.
(1)当以OB为半径的⊙O与⊙A相切时,求t的值;
(2)探究:在线段BC上是否存在点O,使得⊙O与直线AM相切,且与⊙A相外切?若存在,求出此时t的值及相应的⊙O的半径;若不存在,请说明理由.
查看答案
七年级我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:
如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.
我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB'.因此,求AP+BP最小就相当于求AP+PB′最小,显然当A、P、B′在一条直线上时AP+PB′最小,因此连接AB',与直线l的交点就是要求的点P.
有很多问题都可用类似的方法去思考解决.
探究:
(1)如图3,正方形ABCD的边长为2,E为BC的中点,P是BD上一动点.连接EP,CP,则EP+CP的最小值是______
查看答案
某书店正在销售一种课外读本,进价12元/本,售价20元/本,为了促销,书店决定凡是一次购买10本以上的客户,每多买一本,售价就降低0.10元,但最低价为16元/本.
(1)客户一次至少买多少本,才能以最低价购买?
(2)求当一次购买x本时(x>10),书店利润y(元)与购买量x(本)之间的函数关系式;
(3)在销售过程中,书店发现卖出50本比卖出46本赚的钱少,为了使每次的销售均能达到多卖出就多获利,在其他促销条件不变的情况下,最低价应确定为多少元/本?请说明理由.
查看答案