满分5 > 初中数学试题 >

已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是C...

已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.
(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为______
(1)根据等腰直角三角形的性质,根据“直角三角形斜边上的中线等于斜边的一半”可知BD=BM, (2)先证明△MDE≌△MFC,得出AD=ED=FC,再作AN⊥EC于点N,证出△DBF是等腰直角三角形,根据点M是DF的中点,得出△BMD是等腰直角三角形,即可得出BD=BM. 【解析】 (1)BD=BM, (2)结论成立. 证明:过点C作CF∥ED,与DM的延长线交于点F,连接BF, 可证得△MDE≌△MFC, ∴DM=FM,DE=FC, ∴AD=ED=FC, 作AN⊥EC于点N, 由已知∠ADE=90°,∠ABC=90°, 可证得∠DEN=∠DAN,∠NAB=∠BCM, ∵CF∥ED, ∴∠DEN=∠FCM, ∴∠BCF=∠BCM+∠FCM=∠NAB+∠DEN=∠NAB+∠DAN=∠BAD, ∴△BCF≌△BAD, ∴BF=BD,∠DBA=∠CBF, ∴∠DBF=∠DBA+∠ABF=∠CBF+∠ABF=∠ABC=90°, ∴△DBF是等腰直角三角形, ∵点M是DF的中点, 则△BMD是等腰直角三角形, ∴BD=BM.
复制答案
考点分析:
相关试题推荐
甲、乙两地相距50千米,图中折线表示某骑车人离甲地的距离y与时间x的函数关系.有一辆客车9点从乙地出发,以50千米/时的速度匀速行驶,并往返于甲、乙两地之间.(乘客上、下车停留时间忽略不计)
(1)从折线图可以看出,骑车人一共休息______次,共休息______小时;
(2)请在图中画出9点至15点之间客车与甲地的距离y随时间x变化的函数图象;
(3)通过计算说明,何时骑车人与客车第二次相遇.
manfen5.com 满分网
查看答案
如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC.
(1)若∠CPA=30°,求PC的长;
(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的大小.

manfen5.com 满分网 查看答案
列方程或方程组解应用题:
某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:
信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;
信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.
根据以上信息,原来报名参加的学生有多少人?
查看答案
如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:manfen5.com 满分网,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
去科技馆的门票仅剩下一张,小明和小华都想去,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.