满分5 > 初中数学试题 >

如图所示,在平面直角坐标系中,⊙M经过原点O,且与x轴、y轴分别相交于A(-6,...

如图所示,在平面直角坐标系中,⊙M经过原点O,且与x轴、y轴分别相交于A(-6,0),B(0,-8)两点.
(1)请求出直线AB的函数表达式;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数表达式;
(3)设(2)中的抛物线交x轴于D,E两点,在抛物线上是否存在点P,使得S△PDE=manfen5.com 满分网S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据“两点法”可求直线AB解析式; (2)求直径AB,得半径MC的值,由中位线定理得MN=OB,CN=MC-MN,又CM垂直平分线段AO,可得C点横坐标及纵坐标,设抛物线顶点式,把B点坐标代入即可求抛物线解析式; (3)由(2)可求线段DE的长,△ABC的面积可求,这样可求△PDE中DE边上的高,可表示P点的纵坐标,代入抛物线解析式求P点横坐标即可. 【解析】 (1)设直线AB的函数表达式为y=kx+b(k≠0), ∵直线AB经过A(-6,0),B(0,-8), ∴由此可得 解得 ∴直线AB的函数表达式为y=-x-8. (2)在Rt△AOB中,由勾股定理,得, ∵⊙M经过O,A,B三点,且∠AOB=90°, ∴AB为⊙M的直径, ∴半径MA=5, 设抛物线的对称轴交x轴于点N, ∵MN⊥x, ∴由垂径定理,得AN=ON=OA=3. 在Rt△AMN中,, ∴CN=MC-MN=5-4=1, ∴顶点C的坐标为(-3,1), 设抛物线的表达式为y=a(x+3)2+1, ∵它经过B(0,-8), ∴把x=0,y=-8代入上式, 得-8=a(0+3)2+1,解得a=-1, ∴抛物线的表达式为y=-(x+3)2+1=-x2-6x-8. (3)如图,连接AC,BC, S△ABC=S△AMC+S△BMC=•MC•AN+MC•ON=×5×3+×5×3=15. 在抛物线y=-x2-6x-8中,设y=0,则-x2-6x-8=0, 解得x1=-2,x2=-4. ∴D,E的坐标分别是(-4,0),(-2,0),∴DE=2; 设在抛物线上存在点P(x,y),使得S△PDE=S△ABC=×15=1, 则S△PDE=•DE•|y|=×2×|y|=1,∴y=±1, 当y=1时,-x2-6x-8=1,解得x1=x2=-3,∴P1(-3,1); 当y=-1时,-x2-6x-8=-1,解得x1=-3+,x2=-3-, ∴P2(-3+,-1),P3(-3-,-1). 综上所述,这样的P点存在, 且有三个,P1(-3,1),P2(-3+,-1),P3(-3-,-1).
复制答案
考点分析:
相关试题推荐
如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC交BC的延长线于E点.
(1)求证:四边形ACED是平行四边形;
(2)若AD=3,BC=7,求梯形ABCD的面积.

manfen5.com 满分网 查看答案
荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.
(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?
(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.
查看答案
如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求证:△ABE∽△ADB,并求AB的长;
(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?

manfen5.com 满分网 查看答案
经过江汉平原的沪蓉(上海-成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.
(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.48.);
(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.
manfen5.com 满分网
查看答案
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.