满分5 > 初中数学试题 >

已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公...

已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).
(1)求此抛物线和直线的解析式;
(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;
(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.
manfen5.com 满分网
(1)由待定系数法可得出k和a; (2)设点P的坐标为(t,2t),则可得点Q的坐标,从而求出PQ,再根据二次函数的最值问题得出最大长度; (3)易求得点M的坐标,过点M作直线OA的平行线交抛物线于点N,则四边形AOMN为梯形.由平移的性质可得出直线MN的解析式,再由点M在直线MN上,求得点N的坐标.再用割补法和面积的求法得出答案. 【解析】 (1)由题意,可得8=16a-4(a+1)及8=4k, 解得a=1,k=2, 所以,抛物线的解析式为y=x2-2x,直线的解析式为y=2x.(2分) (2)设点P的坐标为(t,2t)(0≤t≤4),可得点Q的坐标为(t,t2-2t), 则PQ=2t-(t2-2t)=4t-t2=-(t-2)2+4, 所以,当t=2时,PQ的长度取得最大值为4.(4分) (3)易知点M的坐标为(1,-1).过点M作直线OA的平行线交抛物线于点N,如图所示,四边形AOMN为梯形.直线MN可看成是由直线OA向下平移b个单位得到,所以直线MN的方程为y=2x-b.因为点M在直线y=2x-b上,解得b=3,即直线MN的方程为y=2x-3,将其代入y=x2-2x,可得2x-3=x2-2x 即x2-4x+3=0 解得x1=1,x2=3 易得y1=-1,y2=3 所以,直线MN与抛物线的交点N的坐标为(3,3).(5分) 如图,分别过点M、N作y轴的平行线交直线OA于点G、H, 显然四边形MNHG是平行四边形.可得点G(1,2),H(3,6). S□MNHG=(3-1)×NH=2×3=6 所以,梯形AOMN的面积S梯形AOMN=S△OMG+S□MNHG+S△ANH=9.(7分)
复制答案
考点分析:
相关试题推荐
已知关于x的方程x2-(m-3)x+m-4=0.
(1)求证:方程总有两个实数根;
(2)若方程有一个根大于4且小于8,求m的取值范围;
(3)设抛物线y=x2-(m-3)x+m-4与y轴交于点M,若抛物线与x轴的一个交点关于直线y=-x的对称点恰好是点M,求m的值.

manfen5.com 满分网 查看答案
为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).
(1)请根据所给的扇形图和条形图,填写出扇形图中缺失的数据,并把条形图补充完整;
(2)在问卷调查中,小丁和小李分别选择了音乐类和美术类,校学生会要从选择音乐类和美术类的学生中分别抽取一名学生参加活动,用列表或画树状图的方法求小丁和小李恰好都被选中的概率;
(3)如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?
manfen5.com 满分网
查看答案
如图,AB为⊙O的直径,AB=4,点C在⊙O上,CF⊥OC,且CF=BF.
(1)证明BF是⊙O的切线;
(2)设AC与BF的延长线交于点M,若MC=6,求∠MCF的大小.

manfen5.com 满分网 查看答案
列方程或方程组解应用题:
“五一”节日期间,某超市进行积分兑换活动,具体兑换方法见右表.爸爸拿出自己的积分卡,对小华说:“这里积有8200 分,你去给咱家兑换礼品吧”.小华兑换了两种礼品,共10件,还剩下了200分,请问她兑换了哪两种礼品,各多少件?
积分兑换礼品表
兑换礼品积分
电茶壶一个7000分
保温杯一个2000分
牙膏一支500分

查看答案
如图,一次函数y=kx+b与反比例函数manfen5.com 满分网的图象交于A(2,1),B(-1,n)两点.
(1)求k和b的值;
(2)结合图象直接写出不等式manfen5.com 满分网的解集.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.