已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:______;
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
考点分析:
相关试题推荐
现有一个种植总面积为540m
2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积,产量、利润分别如下:
| 占地面积(m2/垄) | 产量(千克/垄) | 利润(元/千克) |
西红柿 | 30 | 160 | 1.1 |
草莓 | 15 | 50 | 1.6 |
(1)若设草莓共种植了x垄,通过计算说明共有几种种植方案分别是哪几种;
(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?
查看答案
如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A(0,2),B(5,2)C(6,0),解答下列问题:
(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为______;
(2)连接AD,CD,求⊙D的半径(结果保留根号);
(3)求扇形DAC的面积.(结果保留π)
查看答案
初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了______名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计该市近20 000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)
查看答案
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取
=1.732,结果精确到1m)
查看答案
如图,已知平行四边形ABCD中,点E为BC边的中点,延长DE,AB相交于点F.
求证:CD=BF.
查看答案