满分5 > 初中数学试题 >

如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥...

如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;
(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.
①求证:AG⊥CH;
②当AD=4,DG=manfen5.com 满分网时,求CH的长.
manfen5.com 满分网
(1)寻找AG、CE所在的两个三角形全等的条件,证明全等即可; (2)①由△AGD≌△CED,可知∠1=∠2,利用对顶角相等及互余关系证明垂直; ②连接GE交AD于P,根据S△AGD+S△ACD=S四边形ACDG=S△ACG+S△CGD,再分别表示四个三角形的底和高,列方程求CH. 【解析】 (1)AG=CE成立. 证明:∵四边形ABCD、四边形DEFG是正方形, ∴GD=DE,AD=DC,(1分) ∠GDE=∠ADC=90°. ∴∠GDA=90°-∠ADE=∠EDC.                     (2分) ∴△AGD≌△CED. ∴AG=CE.                                     (3分) (2)①类似(1)可得△AGD≌△CED, ∴∠1=∠2.                                    (4分) 又∵∠HMA=∠DMC, ∴∠AHM=∠ADC=90°, 即AG⊥CH.                                    (5分) ②连接GE,交AD于P,连接CG, 由题意有, ∴AP=3,.                            (8分) ∵EG⊥AD,CD⊥AD,∴EG∥CD, ∴以CD为底边的△CDG的高为PD=1,(延长CD画高) S△AGD+S△ACD=S四边形ACDG=S△ACG+S△CGD ∴4×1+4×4=×CH+4×1 ∴CH=.                                   (10分)
复制答案
考点分析:
相关试题推荐
如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);
(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?

manfen5.com 满分网 查看答案
“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
查看答案
一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)求摸出1个球是白球的概率;
(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);
(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为manfen5.com 满分网.求n的值.
查看答案
如图,在平面直角坐标系xOy中,点A(manfen5.com 满分网,0),点B(0,1),直线EF与x轴垂直,A为垂足.
(1)若线段AB绕点A按顺时针方向旋转到AB′的位置,并使得AB与AB′关于直线EF对称,请你画出线段AB所扫过的区域(用阴影表示);
(2)计算(1)中线段AB所扫过区域的面积.

manfen5.com 满分网 查看答案
解二元一次方程组:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.