首先利用待定系数法求得直线的解析式,然后分别求得B1,B2,B3…的坐标,可以得到规律:Bn(2n-1,2n-1),据此即可求解.
【解析】
∵B1的坐标为(1,1),点B2的坐标为(3,2),
∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,
∴A1的坐标是(0,1),A2的坐标是:(1,2),
代入y=kx+b得:
,
解得:,
则直线的解析式是:y=x+1.
∵A1B1=1,点B2的坐标为(3,2),
∴点A3的坐标为(3,4),
∴A3C2=A3B3=B3C3=4,
∴点B3的坐标为(7,4),
∴B1的纵坐标是:1=2,B1的横坐标是:1=21-1,
∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,
∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,
∴Bn的纵坐标是:2n-1,横坐标是:2n-1,
则Bn(2n-1,2n-1).
∴B8的坐标是:(28-1,28-1),即(255,128).
故答案为:(28-1,28-1)或(255,128).