满分5 > 初中数学试题 >

如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB...

如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.
(1)求证:OE=OF;
(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.

manfen5.com 满分网
(1)根据正方形的性质对角线垂直且平分,得到OB=OA,又因为AM⊥BE,所以∠MEA+∠MAE=90°=∠AFO+∠MAE,从而求证出Rt△BOE≌Rt△AOF,得到OE=OF. (2)根据第一步得到的结果以及正方形的性质得到OB=OA,再根据已知条件求证出Rt△BOE≌Rt△AOF,得到OE=OF. (1)证明:∵四边形ABCD是正方形. ∴∠BOE=∠AOF=90°,OB=OA. 又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE, ∴∠MEA=∠AFO. ∴Rt△BOE≌Rt△AOF. ∴OE=OF. (2)【解析】 OE=OF成立. 证明:∵四边形ABCD是正方形, ∴∠BOE=∠AOF=90°,OB=OA. 又∵AM⊥BE, ∴∠F+∠MBF=90°, ∠E+∠OBE=90°, 又∵∠MBF=∠OBE, ∴∠F=∠E. ∴Rt△BOE≌Rt△AOF. ∴OE=OF.
复制答案
考点分析:
相关试题推荐
(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?
查看答案
小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.

manfen5.com 满分网 查看答案
为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):
230    195    180    250    270    455    170
请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.
查看答案
判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=    (n是整数,且1≤n<7). 查看答案
如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.