满分5 > 初中数学试题 >

如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴...

如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.
(1)求抛物线的函数表达式;
(2)求直线BC的函数表达式;
(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.
①当线段PQ=manfen5.com 满分网AB时,求tan∠CED的值;
②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.
温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.
manfen5.com 满分网
已知C点的坐标,即知道OC的长,可在直角三角形BOC中根据∠BCO的正切值求出OB的长,即可得出B点的坐标.已知了△AOC和△BOC的面积比,由于两三角形的高相等,因此面积比就是AO与OB的比.由此可求出OA的长,也就求出了A点的坐标,然后根据A、B、C三点的坐标即可用待定系数法求出抛物线的解析式. 【解析】 (1)∵抛物线的对称轴为直线x=1, ∴ ∴b=-2 ∵抛物线与y轴交于点C(0,-3), ∴c=-3, ∴抛物线的函数表达式为y=x2-2x-3; (2)∵抛物线与x轴交于A、B两点, 当y=0时,x2-2x-3=0. ∴x1=-1,x2=3. ∵A点在B点左侧, ∴A(-1,0),B(3,0) 设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m, 则, ∴ ∴直线BC的函数表达式为y=x-3; (3)①∵AB=4,PQ=AB, ∴PQ=3 ∵PQ⊥y轴 ∴PQ∥x轴, 则由抛物线的对称性可得PM=, ∵对称轴是直线x=1, ∴P到y轴的距离是, ∴点P的横坐标为, ∴P(,) ∴F(0,), ∴FC=3-OF=3-= ∵PQ垂直平分CE于点F, ∴CE=2FC= ∵点D在直线BC上, ∴当x=1时,y=-2,则D(1,-2), 过点D作DG⊥CE于点G, ∴DG=1,CG=1, ∴GE=CE-CG=-1=. 在Rt△EGD中,tan∠CED=. ②P1(1-,-2),P2(1-,-). 设OE=a,则GE=2-a, 当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a), ∴1=1×(2-a), ∴a=1, ∴CE=2, ∴OF=OE+EF=2 ∴F、P的纵坐标为-2, 把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:x=1+或1- ∵点P在第三象限. ∴P1(1-,-2), 当CD为斜边时,DE⊥CE, ∴OE=2,CE=1, ∴OF=2.5, ∴P和F的纵坐标为:-, 把y=-,代入抛物线的函数表达式为y=x2-2x-3得:x=1-,或1+, ∵点P在第三象限. ∴P2(1-,-). 综上所述:满足条件为P1(1-,-2),P2(1-,-).
复制答案
考点分析:
相关试题推荐
已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.
(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;
(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;
(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?manfen5.com 满分网
查看答案
2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:
成本价(万元/辆)售价(万元/辆)
A型3032
B型4245
(1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案?
(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?
(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.
查看答案
如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点.
(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;
(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;
(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.
manfen5.com 满分网
查看答案
汶川灾后重建工作受到全社会的广泛关注,全国各省对口支援四川省受灾市县.我省援建剑阁县,建筑物资先用火车源源不断的运往距离剑阁县180千米的汉中市火车站,再由汽车运往剑阁县.甲车在驶往剑阁县的途中突发故障,司机马上通报剑阁县总部并立即检查和维修.剑阁县总部在接到通知后第12分钟时,立即派出乙车前往接应.经过抢修,甲车在乙车出发第8分钟时修复并继续按原速行驶,两车在途中相遇.为了确保物资能准时运到,随行人员将物资全部转移到乙车上(装卸货物时间和乙车掉头时间忽略不计),乙车按原速原路返回,并按预计时间准时到达剑阁县.下图是甲、乙两车离剑阁县的距离y(千米)与时间x(小时)之间的函数图象.请结合图象信息解答下列问题:
(1)请直接在坐标系中的( )内填上数据.
(2)求直线CD的函数解析式,并写出自变量的取值范围.
(3)求乙车的行驶速度.
manfen5.com 满分网
查看答案
在一副扑克牌中,拿出红桃2、红桃3、红桃4、红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).
(1)用列表法或树形图表示出(x,y)的所用可能出现的结果;
(2)求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.