在平面直角坐标系中,抛物线y=ax
2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(6,0),若将经过B、C两点的直线y=mx+n沿y轴向下平移6则恰好经过原点,且抛物线的对称轴是直线x=4.
(1)求抛物线及直线BC的解析式;
(2)如果P是线段BC上一点,设△ABP、△ACP的面积分别是S
△ABP、S
△ACP,且S
△ABP=
S
△ACP,求点P的坐标;
(3)设⊙Q的半径为2,圆心Q在抛物线上运动.则在运动过程中,是否存在圆Q与坐标轴相切的情况,若存在,请求出圆心Q的坐标,若不存在,请说明理由.
(4)在(3)的情况下,设⊙Q的半径为r,是否存在与两坐标轴同时相切的圆,若存在,求出半径r的值,若不存在,请说明理由.
考点分析:
相关试题推荐
如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连接BO、ED,且BO∥ED,作弦EF⊥AC于G,连接DF.
(1)求证:AB为⊙O的切线;
(2)连接CE,求证:AE
2=AD•AC;
(3)若⊙O的半径为5,sin∠DFE=
,求EF的长.
查看答案
学校为改善办公条件,计划同时购进一批办公软件和液晶显示器,具体操作由街上一家电脑经销商办理.经销商若购进软件5套和显示器4台,共需资金4200元;若购进软件2套和显示器6台,共需资金5200元.
(1)求每套办公软件和每台液晶显示器的单价;
(2)学校需要这两种产品的总数是40台(套),所给经销商可用于购买这两种产品的资金不超过20000元,根据市场行情,经销商销售一套软件和一台显示器可分别获利20元和180元.经销商希望销售完这两种产品,所获利润不少于3680元.请问:经销商有几种进货方案?通过计算说明哪种方案获利最大?最大利润是多少?
查看答案
如图中曲线是反比例函数
的图象的一条.
(1)这个反比例函数图象的另一条位于哪个象限?求出常数m的取值范围;
(2)若一次函数
的图象与反比例函数的图象交于点A,与y轴、x轴分别交于点B、C,如图所示.已知△AOC的面积为2,求m的值;
(3)设点M(x
,y
)是线段BC上的一动点,过M作x轴的垂线,垂足为N,作y轴的垂线,垂足为E,求矩形MNOE面积的最大值.
查看答案
以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.
请根据以上信息解答下列问题:
(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)?
(2)补全条形统计图;
(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.
排量(L) | 小与1.6 | 1.6 | 1.8 | 大于1.8 |
数量(辆) | 29 | 75 | 31 | 15 |
如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨?
查看答案
(1)计算:
;
(2)先化简,再求值:
,其中a为整数,且满足-3<a<3.
查看答案