在平面直角坐标系中,抛物线y=ax
2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(6,0),若将经过B、C两点的直线y=mx+n沿y轴向下平移6则恰好经过原点,且抛物线的对称轴是直线x=4.
(1)求抛物线及直线BC的解析式;
(2)如果P是线段BC上一点,设△ABP、△ACP的面积分别是S
△ABP、S
△ACP,且S
△ABP=
S
△ACP,求点P的坐标;
(3)设⊙Q的半径为2,圆心Q在抛物线上运动.则在运动过程中,是否存在圆Q与坐标轴相切的情况,若存在,请求出圆心Q的坐标,若不存在,请说明理由.
(4)在(3)的情况下,设⊙Q的半径为r,是否存在与两坐标轴同时相切的圆,若存在,求出半径r的值,若不存在,请说明理由.
查看答案