满分5 > 初中数学试题 >

如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C. (1)求...

如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式; (2)根据平行四边形的性质,对边平行且相等以及对角线互相平分,可以求出点D的坐标; (3)根据相似三角形对应边的比相等可以求出点P的坐标. 【解析】 (1)设抛物线的解析式为y=ax2+bx+c(a≠0),且过A(-2,0),B(-3,3),O(0,0)可得 , 解得. 故抛物线的解析式为y=x2+2x; (2)①当AO为边时, ∵A、O、D、E为顶点的四边形是平行四边形, ∴DE=AO=2, 则D在x轴下方不可能, ∴D在x轴上方且DE=2, 则D1(1,3),D2(-3,3); ②当AO为对角线时,则DE与AO互相平分, ∵点E在对称轴上,对称轴为直线x=-1, 由对称性知,符合条件的点D只有一个,与点C重合,即D3(-1,-1) 故符合条件的点D有三个,分别是D1(1,3),D2(-3,3),D3(-1,-1); (3)存在, 如图:∵B(-3,3),C(-1,-1),根据勾股定理得: BO2=18,CO2=2,BC2=20, ∴BO2+CO2=BC2. ∴△BOC是直角三角形. 假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似, 设P(x,y),由题意知x>0,y>0,且y=x2+2x, ①若△AMP∽△BOC,则=, 即 x+2=3(x2+2x) 得:x1=,x2=-2(舍去). 当x=时,y=,即P(,). ②若△PMA∽△BOC,则=, 即:x2+2x=3(x+2) 得:x1=3,x2=-2(舍去) 当x=3时,y=15,即P(3,15). 故符合条件的点P有两个,分别是P(,)或(3,15).
复制答案
考点分析:
相关试题推荐
如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=5manfen5.com 满分网,且tan∠EDA=manfen5.com 满分网
(1)判断△OCD与△ADE是否相似?请说明理由;
(2)求直线CE与x轴交点P的坐标;
(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
在全市中学运动会800m比赛中,甲乙两名运动员同时起跑,刚跑出200m后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩.图中分别表示甲、乙两名运动员所跑的路程y(m)与比赛时间x(s)之间的关系,根据图象解答下列问题:
(1)甲摔倒前,______的速度快(填甲或乙);
(2)甲再次投入比赛后,在距离终点多远处追上乙?

manfen5.com 满分网 查看答案
如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).(供选用的数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:
分数段频数频率
60≤x<70300.15
70≤x<80m0.45
80≤x<9060n
90≤x<100200.1
请根据以上图表提供的信息,解答下列问题:
(1)表中m和n所表示的数分别为:m=______,n=______
(2)请在图中,补全频数分布直方图;
(3)比赛成绩的中位数落在哪个分数段;
(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?

manfen5.com 满分网 查看答案
如图,在△ABC中,点E是AC边上的中点,点F是AB边上的中点,连接EF并延长至点D,再连接BD.请你添加一个条件,使BD=CE(不再添加其它线段,不再标注或使用其他字母),并给出证明.
添加的条件是:______
证明:

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.