如图,在平面直角坐标系中,直线y=-
x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.
(1)求点P的坐标.
(2)当b值由小到大变化时,求S与b的函数关系式.
(3)若在直线y=-
x+b(b>0)上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.
(4)在b值的变化过程中,若△PCD为等腰三角形,请直接写出所有符合条件的b值.
查看答案
在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.
(1)求过A,B,C三点的抛物线的解析式;
(2)求点D的坐标;
(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.
查看答案