满分5 > 初中数学试题 >

如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,...

如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为manfen5.com 满分网的中点,AE交y轴于G点,若点A的坐标为(-2,0),AE=8.
manfen5.com 满分网
(1)求点C的坐标;
(2)连接MG、BC,求证:MG∥BC;
(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,manfen5.com 满分网的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.
(1)求C点的坐标,即求出OC的长.根据垂径定理可得出弧CD=2弧AC,而题中已经告诉了C是弧AE的中点,即弧AE=2弧AC,即弧CD=弧AE,因此CD=AE,那么OC=AE=4,即可求出C点坐标; (2)由于无法直接证明∠OMG=∠OBC来得出两直线平行,因此可通过相似三角形来求解,可设出圆的半径,然后分别求出OG、OM、OB的长,然后通过证OG、OM,OC、OB对应成比例来得出△OMG与△OBC相似来得出∠OMG=∠OBC,进行得出所求的结论; (3)OF与OP的比例关系不变,在直角三角形DMP中,根据射影定理有DM2=MO•MP,①同理可求出OD2=OM•OP; ②然后分三种情况: A:F与A重合时,OF=OA,PF=PA,可根据②求出OP的长根据①求出MP的长即可求出OP的长,进而可求出所求的比例关系; B:F与B重合,同一; C:F不与A、B重合.可通过相似三角形来求解.由于MF=DM,根据①可得出△OMF与△FMP相似,可得出. 综合三种情况即可得出OF:PF的值. (1)【解析】 方法(一) ∵直径AB⊥CD, ∴CO=CD, =, ∵C为的中点, ∴=, ∴=, ∴CD=AE, ∴CO=CD=4, ∴C点的坐标为(0,4). 方法(二)如图1,连接BG,GM,连接CM,交AE于点N, ∵C为的中点,M为圆心, ∴AN=AE=4, CM⊥AE, ∴∠ANM=∠COM=90°, 在△ANM和△COM中: ∵, ∴△ANM≌△COM(AAS), ∴CO=AN=4, ∴C点的坐标为(0,4). (2)证明:设半径AM=CM=r,则OM=r-2, 由OC2+OM2=MC2得: 42+(r-2)2=r2, 解得:r=5,(1分) ∴OM=r-OA=3 ∵∠AOC=∠ANM=90°, ∠EAM=∠MAE, ∴△AOG∽△ANM, ∴, ∵MN=OM=3, 即, ∴OG=,(2分) ∵, , ∴, ∵∠BOC=∠BOC, ∴△GOM∽△COB, ∴∠GMO=∠CBO, ∴MG∥BC. (3)【解析】 如图2,连接DM,则DM⊥PD,DO⊥PM, ∴△MOD∽△MDP,△MOD∽△DOP, ∴DM2=MO•MP; DO2=OM•OP, 即42=3•OP, ∴OP=. 当点F与点A重合时:, 当点F与点B重合时:, 当点F不与点A、B重合时:连接OF、PF、MF, ∵DM2=MO•MP, ∴FM2=MO•MP, ∴, ∵∠AMF=∠FMA, ∴△MFO∽△MPF, ∴. ∴综上所述,的比值不变,比值为.
复制答案
考点分析:
相关试题推荐
如图,经过点A(0,-4)的抛物线y=manfen5.com 满分网x2+bx+c与x轴相交于B(-2,0),C两点,O为坐标原点.
(1)求抛物线的解析式;
(2)将抛物线y=manfen5.com 满分网x2+bx+c向上平移manfen5.com 满分网个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;
(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.

manfen5.com 满分网 查看答案
邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.
manfen5.com 满分网
(1)判断与推理:
①邻边长分别为2和3的平行四边形是______阶准菱形;
②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.
(2)操作、探究与计算:
①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;
②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.
查看答案
在日常生活中,我们经常有目的地收集数据,分析数据,作出预测.
(1)下图是小芳家2009年全年月用电量的条形统计图.
manfen5.com 满分网
根据图中提供的信息,回答下列问题:
①2009年小芳家月用电量最小的是______月,四个季度中用电量最大的是第______季度;
②求2009年5月至6月用电量的月增长率;
(2)今年小芳家添置了新电器.已知今年5月份的用电量是120千瓦时,根据2009年5月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时.假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电量是多少千瓦时?
查看答案
如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管与支架CD所在直线相交于水箱横断面⊙O的圆心O,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.
(1)求垂直支架CD的长度;(结果保留根号)
(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.73)
manfen5.com 满分网
查看答案
解方程:x2-manfen5.com 满分网=2x-1
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.