满分5 > 初中数学试题 >

如图,已知点A(-2,4)和点B(1,0)都在抛物线y=mx2+2mx+n上. ...

如图,已知点A(-2,4)和点B(1,0)都在抛物线y=mx2+2mx+n上.
(1)求m、n;
(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形AA′B′B为菱形,求平移后抛物线的表达式;
(3)试求出菱形AA′B′B的对称中心点M的坐标.

manfen5.com 满分网
(1)本题需先根据题意把A (-2,4)和点B (1,0)代入抛物线y=mx2+2mx+n中,解出m、n的值即可. (2)本题需先根据四边形AA′B′B为菱形得出y的解析式,再把解析式向右平移5个单位即可得到平移后抛物线的表达式. (3)本题需根据平移与菱形的性质,得到A′、B′的坐标,再过点A′作A′H⊥x轴,得出BH和A′H的值,再设菱形AA′B′B的中心点M,作MG⊥x轴,根据中位线性质得到MG、BG的值,最后求出点M的坐标. 【解析】 (1)根据题意,把A (-2,4)和点B (1,0)代入抛物线y=mx2+2mx+n中, 解得; (2)四边形AA′B′B为菱形, 则AA′=B′B=AB=5; ∵, =; ∴向右平移5个单位的抛物线解析式为, ; (3)根据平移与菱形的性质,得到 A′(3,4),B′(6,0); 过点A′作A′H⊥x轴, 在Rt△A′BH中,点H(3,0),点B(1,0), 故BH=2,A′H=4; 设菱形AA′B′B的中心点M,作MG⊥x轴, 根据中位线性质得 , ; 因此菱形AA′B′B的中心点M坐标为(2,2).
复制答案
考点分析:
相关试题推荐
某单位团支部组织青年团员参加登山比赛.比赛奖次所设等级分为:一等奖1人,二等奖4人,三等奖5人.团支部要求一等奖奖品单价比二等奖奖品单价高15元,二等奖奖品单价比三等奖奖品单价高15元.设一等奖奖品的单价为x(元),团支部购买奖品总金额为y(元).
(1)求y与x的函数关系式(即函数表达式);
(2)因为团支部活动经费有限,购买奖品的总金额应限制在:500≤y≤600.在这种情况下,请根据备选奖品表提出购买一、二、三等奖奖品有哪几种方案然后本着尽可能节约资金的原则,选出最佳方案,并求出这时全部奖品所需总金额是多少?
备选奖品及单价如下表(单价:元)
备选奖品足球篮球排球羽毛球拍乒乓球拍旱冰鞋运动衫象棋围棋
单价(元)847974696459544944

查看答案
如图,在平面直角坐标系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC经过旋转变换得到的.
(1)问由△ABC旋转得到的△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;
(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1、△ABC分别按顺时针、逆时针各旋转90°的两个三角形,并写出变换后与A1相对应点A2的坐标;
(3)利用变换前后所形成图案证明勾股定理(设△ABC两直角边为a、b,斜边为c).

manfen5.com 满分网 查看答案
如图,AB为⊙O的直径,点C在上,点D在AB的延长线上于,且AC=CD,已知∠D=30°.
(1)判断CD与⊙O的位置关系,请说明理由.
(2)若弦CF⊥AB,垂足为E,且CF=manfen5.com 满分网,求图中阴影部分的面积.

manfen5.com 满分网 查看答案
在平面直角坐标系中.过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如.图中过点P分別作x轴,y轴的垂线.与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.
(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;
(2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求a,b的值.

manfen5.com 满分网 查看答案
求参数t的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.