满分5 > 初中数学试题 >

如图,在平面直角坐标系中,O是坐标原点,直线与x轴,y轴分别交于B,C两点,抛物...

如图,在平面直角坐标系中,O是坐标原点,直线manfen5.com 满分网与x轴,y轴分别交于B,C两点,抛物线manfen5.com 满分网经过B,C两点,与x轴的另一个交点为点A,动点P从点A出发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒.
(1)求抛物线的解析式及点A的坐标;
(2)以OC为直径的⊙O′与BC交于点M,当t为何值时,PM与⊙O′相切?请说明理由.
(3)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C运动,动点N从点C出发沿CA以每秒manfen5.com 满分网个单位长度的速度向点A运动,运动时间和点P相同.
①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少?
②是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由.
manfen5.com 满分网
(1)由直线与x轴,y轴分别交于B,C两点,分别令x=0和y=0求出B与C的坐标,又抛物线经过B,C两点,把求出的B与C的坐标代入到二次函数的表达式里得到关于b,c的方程,联立解出b和c即可求出二次函数的解析式.又因A点是二次函数与x轴的另一交点令y=0即可求出点A的坐标. (2)连接OM,PM与⊙O′相切作为题中的已知条件来做.由直径所对的圆周角为直角可得∠OMC=90°从而得∠OMB=90°.又因为O′O是⊙O′的半径,O′O⊥OP得到OP为⊙O′的切线,然后根据从圆外一点引圆的两条切线,切线长相等可得OP=PM,根据等边对等角得∠POM=∠PMO,然后根据等角的余角相等可得∠PMB=∠OBM,再根据等角对等边得PM=PB,然后等量代换即可求出OP的长,加上OA的长即为点P运动过的路程AP,最后根据时间等于路程除以速度即可求出时间t的值. (3)①由路程等于速度乘以时间可知点P走过的路程AP=3t,则BP=15-3t,点Q走过的路程为BQ=3t,然后过点Q作QD⊥OB于点D,证△BQD∽△BCO,由相似得比列即可表示出QD的长,然后根据三角形的面积公式即可得到S关于t的二次函数关系式,然后利用t=-时对应的S的值即可求出此时的最大值. ②要使△NCQ为直角三角形,必须满足三角形中有一个直角,由BA=BC可知∠BCA=∠BAC,所以角NCQ不可能为直角,所以分两种情况来讨论:第一种,当角NQC为直角时,利用两组对应角的相等可证△NCQ∽△CAO,由相似得比例即可求出t的值;第二种当∠QNC=90°时,也是证三角形的相似,由相似得比例求出t的值. 【解析】 (1)在y=-x+9 中,令x=0,得y=9;令y=0,得x=12. ∴C(0,9),B(12,0). 又抛物线经过B,C两点,∴,解得 ∴y=-x2+x+9. 于是令y=0,得-x2+x+9=0, 解得x1=-3,x2=12.∴A(-3,0). (2)当t=3秒时,PM与⊙O′相切.连接OM. ∵OC是⊙O′的直径,∴∠OMC=90°.∴∠OMB=90°. ∵O′O是⊙O′的半径,O′O⊥OP,∴OP是⊙O′的切线. 而PM是⊙O′的切线,∴PM=PO.∴∠POM=∠PMO. 又∵∠POM+∠OBM=90°,∠PMO+∠PMB=90°,∴∠PMB=∠OBM.∴PM=PB. ∴PO=PB=OB=6.∴PA=OA+PO=3+6=9.此时t=3(秒). ∴当t=3秒,PM与⊙O′相切. (3)①过点Q作QD⊥OB于点D. ∵OC⊥OB,∴QD∥OC.∴△BQD∽△BCO.∴=. 又∵OC=9,BQ=3t,BC=15,∴=,解得QD=t. ∴S△BPQ=BP•QD=.即S=. S=.故当时,S最大,最大值为. ②存在△NCQ为直角三角形的情形. ∵BC=BA=15,∴∠BCA=∠BAC,即∠NCM=∠CAO. ∴△NCQ欲为直角三角形,∠NCQ≠90°,只存在∠NQC=90°和∠QNC=90°两种情况. 当∠NQC=90°时,∠NQC=∠COA=90°,∠NCQ=∠CAO, ∴△NCQ∽△CAO.∴=.∴=,解得t=. 当∠QNC=90°时,∠QNC=∠COA=90°,∠QCN=∠CAO, ∴△QCN∽△CAO.∴=.∴=,解得. 综上,存在△NCQ为直角三角形的情形,t的值为和.
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4manfen5.com 满分网,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.
(1)求BC的长;
(2)当MN∥AB时,求t的值;
(3)试探究:t为何值时,△MNC为等腰三角形.

manfen5.com 满分网 查看答案
我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:
①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;
②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;
③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
湘 莲 品 种ABC
每辆汽车运载量(吨)12108
每吨湘莲获利(万元)342

查看答案
如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.

manfen5.com 满分网 查看答案
小胜和小阳用如图所示的两个转盘做游戏,游戏规则如下:分别转两个转盘,将x转盘转到的数字作为横坐标,将y转盘转到的数字作为纵坐标,组成一个点的坐标:(x,y).当这个点在一次函数y=kx的图象上时,小胜得奖品;当这个点在二次函数y=ax2的图象上时,小阳得奖品;其他情况无得奖品.主持人在游戏开始之前分别转了这两个转盘,x盘转到数字3,y盘转到数字9,它们组成点刚好都在这两个函数的图象上.
(1)求k和a的值;
(2)主持人想用列表法求出小胜得奖品和小阳得奖品的概率.请你补全表中他未完成的部分,并写出两人得奖品的概率:P(小胜得奖品)=______,P(小阳得奖品)=______
X
Y
123
6   
8   
9   (3,9)
(3)请你给二次函数y=ax2的右边加上一个常数c(a值及游戏规则不变),使游戏对双方公平,则添上c后的二次函数的解析式应为______

manfen5.com 满分网 查看答案
如图在8×8的正方形网格中建立直角坐标系,已知A(2,4),B(4,2).C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形.
(1)填空:C点的坐标是______,△ABC的面积是______
(2)将△ABC绕点C旋转360°,求出在旋转过程中线段AB所扫过的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.