满分5 > 初中数学试题 >

如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,...

如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.
(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;
(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为______cm2

manfen5.com 满分网
(1)先证明△AEH≌△BFE≌△CGF≌△DHG,可得出四边形GHEF是菱形,再根据全等三角形角之间的关系,又可得出菱形的一个角是直角,那么就可得出四边形GHEF是正方形. (2)根据已知条件,可以知道重新拼成的四边形是正方形(因为正方形GHEF的对角线翻到了外边,做了新拼成的正方形的边长),利用勾股定理求出GF和GO、FO的长,所的面积是10.4个四边形GOFC的面积就是阴影部分的面积. 【解析】 (1)四边形EFGH是正方形.(1分) 证明:∵四边形ABCD是正方形, ∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA, ∵HA=EB=FC=GD, ∴AE=BF=CG=DH,(2分) ∴△AEH≌△BFE≌△CGF≌△DHG,(3分) ∴EF=FG=GH=HE,(4分) ∴四边形EFGH是菱形,(5分) ∵△DHG≌△AEH, ∴∠DHG=∠AEH, ∵∠AEH+∠AHE=90°, ∴∠DHG+∠AHE=90°, ∴∠GHE=90°,(6分) ∴四边形EFGH是正方形.(7分) (2)∵HA=EB=FC=GD=1,AB=BC=CD=AD=3, ∴GF=EF=EH=GH=, ∵由(1)知,四边形EFGH是正方形, ∴GO=OF,∠GOF=90°, 由勾股定理得:GO=OF=, ∵S四边形FCGO=×1×2+××=, ∴S阴影=-S四边形FCGO×4=10-9=1.
复制答案
考点分析:
相关试题推荐
将图所示的长方体石块(a>b>c)放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm3/s,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图1~图3所示.在这三种情况下,水槽内的水深h cm与注水时间 t s的函数关系如图4~图6所示.根据图象完成下列问题:
(1)请分别将三种放置方式的示意图和与之相对应的函数关系图象用线连接起来;
(2)水槽的高=______cm;石块的长a=______cm;宽b=______cm;高c=______cm;
(3)求图5中直线CD的函数关系式;
(4)求圆柱形水槽的底面积S.
manfen5.com 满分网

manfen5.com 满分网 查看答案
某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(完成工程的工期为整数)
(1)甲、乙工程队每天各能铺设多少米?
(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量的方案有几种?请你帮助设计出来(工程队分配工程量为正整百数).
查看答案
“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
manfen5.com 满分网
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?
查看答案
综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字).
(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

manfen5.com 满分网 查看答案
已知manfen5.com 满分网,求代数式(x+1)2-4(x+1)+4的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.