满分5 > 初中数学试题 >

如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A...

如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C-B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.
(1)点C的坐标为______,直线l的解析式为______
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.
(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值.
(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.
manfen5.com 满分网
(1)由平行四边形的性质和点A、B的坐标便可求出C点坐标,将C点坐标代入正比例函数即可求得直线l的解析式; (2)根据题意,得OP=t,AQ=2t,根据t的取值范围不同分三种情况分别进行讨论,得到三种S关于t的函数,解题时注意t的取值范围; (3)分别根据三种函数解析式求出当t为何值时,S最大,然后比较三个最大值,可知当t=时,S有最大值,最大值为; (4)根据题意并细心观察图象,分两种情况讨论可知:当t=时,△QMN为等腰三角形. 【解析】 (1)由题意知:点A的坐标为(8,0),点B的坐标为(11.4), 且OA=BC,故C点坐标为C(3,4), 设直线l的解析式为y=kx, 将C点坐标代入y=kx, 解得k=, ∴直线l的解析式为y=x; 故答案为:(3,4),y=x; (2)根据题意,得OP=t,AQ=2t.分三种情况讨论: ①当0<t≤时,如图1,M点的坐标是(t,t). 过点C作CD⊥x轴于D,过点Q作QE⊥x轴于E,可得△AEQ∽△ODC, ∴, ∴, ∴AE=,EQ=t, ∴Q点的坐标是(8+t,t), ∴PE=8+t, ∴S=t, ②当<t≤3时,如图2,过点Q作QF⊥x轴于F, ∵BQ=2t-5, ∴OF=11-(2t-5)=16-2t, ∴Q点的坐标是(16-2t,4), ∴PF=16-2t-t=16-3t, ∴S=t, ③当点Q与点M相遇时,16-2t=t,解得t=. 当3<t<时,如图3,MQ=16-2t-t=16-3t,MP=4. S=•4•(16-3t)=-6t+32, 所以S=; (3)①当0<t≤时,S=, ∵a=>0,抛物线开口向上,t=时,最大值为; ②当<t≤3时,S=-2t2+. ∵a=-2<0,抛物线开口向下. ∴当t=时,S有最大值,最大值为. ③当3<t<时,S=-6t+32, ∵k=-6<0. ∴S随t的增大而减小. 又∵当t=3时,S=14.当t=时,S=0. ∴0<S<14. 综上所述,当t=时,S有最大值,最大值为. (4)当M点在线段CB上运动时,点Q一定在线段CB上, ①点Q在点M右侧,QM=xQ-xM=16-2t-t=16-3t,NM=NP-MP=t-4 则有16-3t=t-4 解得t=; ②点Q在点M左侧,QM=xM-xQ=3t-16,NM=NP-MP=t-4 则有3t-16=t-4 解得t= 但是,点Q的运动时间为(5+8)÷2=6.5秒,故将②舍去. 当t=时,△QMN为等腰三角形.
复制答案
考点分析:
相关试题推荐
今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
周数x1234
价格y(元/kg)22.22.42.6
进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-manfen5.com 满分网x2+bx+c.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=manfen5.com 满分网x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=manfen5.com 满分网x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)
查看答案
如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m.
(1)求两个路灯之间的距离;
(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?

manfen5.com 满分网 查看答案
如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBE,AD⊥BE,垂足为D.
(1)求证:AD为⊙O的切线;
(2)若AC=2manfen5.com 满分网,tan∠ABD=2,求⊙O的直径.

manfen5.com 满分网 查看答案
潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:
种植户种植A类蔬菜面积
(单位:亩)
种植B类蔬菜面积
(单位:亩)
总收入
(单位:元)
3112500
2316500
说明:不同种植户种植的同类蔬菜每亩平均收入相等.
(1)求A、B两类蔬菜每亩平均收入各是多少元?
(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.
查看答案
“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:
(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;
(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?
(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.