满分5 > 初中数学试题 >

已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点...

已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:
(1)当t为何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
manfen5.com 满分网
(1)当PQ∥BC时,我们可得出三角形APQ和三角形ABC相似,那么可得出关于AP,AB,AQ,AC的比例关系,我们观察这四条线段,已知的有AC,根据P,Q的速度,可以用时间t表示出AQ,BP的长,而AB可以用勾股定理求出,这样也就可以表示出AP,那么将这些数值代入比例关系式中,即可得出t的值. (2)求三角形APQ的面积就要先确定底边和高的值,底边AQ可以根据Q的速度和时间t表示出来.关键是高,可以用AP和∠A的正弦值来求.AP的长可以用AB-BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ边上的高后,就可以得出y与t的函数关系式. (3)如果将三角形ABC的周长和面积平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的长,那么可以求出此时t的值,我们可将t的值代入(2)的面积与t的关系式中,求出此时面积是多少,然后看看面积是否是三角形ABC面积的一半,从而判断出是否存在这一时刻. (4)我们可通过构建相似三角形来求解.过点P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是个矩形,解题思路:通过三角形BPN和三角形ABC相似,得出关于BP,PN,AB,AC的比例关系,即可用t表示出PN的长,也就表示出了MC的长,要想使四边形PQP'C是菱形,PQ=PC,根据等腰三角形三线合一的特点,QM=MC,这样有用t表示出的AQ,QM,MC三条线段和AC的长,就可以根据AC=AQ+QM+MC来求出t的值.求出了t就可以得出QM,CM和PM的长,也就能求出菱形的边长了. 【解析】 (1)在Rt△ABC中,AB=, 由题意知:AP=5-t,AQ=2t,若PQ∥BC,则△APQ∽△ABC, ∴=,∴=, ∴t=.所以当t=时,PQ∥BC. (2)过点P作PH⊥AC于H. ∵△APH∽△ABC, ∴=, ∴=, ∴PH=3-t, ∴y=×AQ×PH=×2t×(3-t)=-t2+3t. (3)若PQ把△ABC周长平分,则AP+AQ=BP+BC+CQ. ∴(5-t)+2t=t+3+(4-2t),解得t=1. 若PQ把△ABC面积平分,则S△APQ=S△ABC,即-+3t=3. ∵t=1代入上面方程不成立, ∴不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分. (4)过点P作PM⊥AC于M,PN⊥BC于N, 若四边形PQP'C是菱形,那么PQ=PC. ∵PM⊥AC于M, ∴QM=CM. ∵PN⊥BC于N,易知△PBN∽△ABC. ∴=,∴=, ∴PN=, ∴QM=CM=, ∴t+t+2t=4,解得:t=. ∴当t=s时,四边形PQP'C是菱形. 此时PM=3-t=cm,CM=t=cm, 在Rt△PMC中,PC===cm, ∴菱形PQP′C边长为cm.
复制答案
考点分析:
相关试题推荐
如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-manfen5.com 满分网x+b交折线OAB于点E.
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.

manfen5.com 满分网 查看答案
如图,已知抛物线manfen5.com 满分网与x轴相交于A、B两点,其对称轴为直线x=2,且与x轴交于点D,AO=1.
(1)填空:b=______,c=______,点B的坐标为(____________):
(2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F.求FC的长;
(3)探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).
(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;
(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:
①tan∠PEF的值是否发生变化?请说明理由;
②直接写出从开始到停止,线段EF的中点经过的路线长.
manfen5.com 满分网
查看答案
如图,在直角坐标系中,已知点A(0,1),B(-4,4),将点B绕点A顺时针方向90°得到点C;顶点在坐标原点的拋物线经过点B.
(1)求抛物线的解析式和点C的坐标;
(2)抛物线上一动点P,设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2=d1+1;
(3)在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PAC的周长的最小值.

manfen5.com 满分网 查看答案
如图,已知Rt△ABC中,∠A=30°,AC=6,边长为4的等边△DEF沿射线AC运动(A、D、E、C四点共线),使边DF、EF与边AB分别相交于点M、N(M、N不与A、B重合).
(1)求证:△ADM是等腰三角形;
(2)设AD=x,△ABC与△DEF重叠部分的面积为y,求y关于x的函数解析式,并写出x的取值范围;
(3)是否存在一个以M为圆心,MN为半径的圆与边AC、EF同时相切?如果存在,请求出圆的半径;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.