满分5 > 初中数学试题 >

阅读下面材料: 小红遇到这样一个问题,如图1:在△ABC中,AD⊥BC,BD=4...

阅读下面材料:
小红遇到这样一个问题,如图1:在△ABC中,AD⊥BC,BD=4,DC=6,且∠BAC=45°,求线段AD的长.
manfen5.com 满分网
小红是这样想的:作△ABC的外接圆⊙O,如图2:利用同弧所对圆周角和圆心角的关系,可以知道∠BOC=90°,然后过O点作
OE⊥BC于E,作OF⊥AD于F,在Rt△BOC中可以求出⊙O半径及OE,在Rt△AOF中可以求出AF,最后利用AD=AF+DF得以解决此题.
请你回答图2中线段AD的长______
参考小红思考问题的方法,解决下列问题:如图3:在△ABC中,AD⊥BC,BD=4,DC=6,且∠BAC=30°,则线段AD的长______
(1)根据小红的解题方法,过O点作OE⊥BC于E,作OF⊥AD于F,在Rt△BOC中可以求出⊙O半径及OE,在Rt△AOF中可以求出AF,最后利用AD=AF+DF得以解决具体计算即可求解; (2)与(1)的解法相同. 【解析】 (1)∵OE⊥BC于E, ∴EC=BC=(BD+CD)=(4+6)=5, 又∵∠BOC=2∠BAC=2×45°=90°, ∴∠COE=45°, ∴直角△OEC中,OC=CE=5, 在直角△AOF中,OF=BE-BD=5-4=1, AF==7, ∴AD=AF+FD=7+5=12,故答案是:12; (2)过O点作OE⊥BC于E,作OF⊥AD于F,在Rt△BOC中可以求出⊙O半径及OE, 与(1)的解法相同,可以得到:EC=5,∠EOC=30°, 则OE=EC=5,OC=2EC=10, 在直角△AOF中,利用勾股定理可以得到:AF=3, 则AD=AF+FD=3+5.
复制答案
考点分析:
相关试题推荐
进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
manfen5.com 满分网
通过这段对话,请你求出该地驻军原来每天加固的米数.
查看答案
2010年4月14日青海玉树发生7.1级地震,地震灾情牵动全国人民的心.某社区响应恩施州政府的号召,积极组织社区居民为灾区人民献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图所示的不完整统计图.已知A、B两组捐款户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.
捐款分组统计表:
组别捐款额(x)元
A10≤x<100
B 100≤x<200
C 200≤x<300
D 300≤x<400
E x≥400
manfen5.com 满分网
(1)A组的频数是多少?本次调查样本的容量是多少?
(2)求出C组的频数并补全直方图.
(3)若该社区有500户住户,请估计捐款不少于300元的户数是多少?
查看答案
已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.
(1)求证:AC与⊙O相切;
(2)当BD=6,sinC=manfen5.com 满分网时,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,小明在楼上点A处观察旗杆BC,测得旗杆顶部B的仰角为30°,测得旗杆底部C的俯角为60°,已知点A距地面的高AD为12m.求旗杆的高度.

manfen5.com 满分网 查看答案
如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=manfen5.com 满分网的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-manfen5.com 满分网<0的解集.(直接写出答案)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.