如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为
,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.
考点分析:
相关试题推荐
某水库管理处记录2010年水库的水位高度y(m)与月份x(月)之间的关系如图所示:在1月至6月份水位呈抛物线上升,到6月份达到最高水位,并且持续三个月,从9月份水位开始以直线下降,12月份水位达到最低.
(1)试写出2010年水库水位高度y(m)与月份x(月)之间的函数关系;
(2)当水位达到或超过9米时,水库水位处在警戒状态,试通过计算说明水库处在警戒时间为几个月?
(3)若该管理处利用水库资源,大力发展水上乐园,从1月份起每月游乐收入W(万元)与月份x(月)之间的函数关系式为W=
,但水位到达警戒状态时,水上乐园必须关闭,暂停游乐.当警戒状态解除后,恢复游乐,问2010年该管理处游乐总收入为多少万元?
(4)为了在汛期水库和游客安全,并且在水位达到警戒状态时也能正常游乐,该管理处每月必须拿出资金进行防洪和维修,每月防洪维修费用Q(万元)与当月的水位高度y(m)之间的函数关系式为Q=
y,问2010年该管理处几月份的纯收入最高,最高为多少万元?(纯收入=游乐收入-防洪维修费用)
查看答案
某居民小区有一朝向为正南方向的居民楼(如图 ),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.
(1)问超市以上的居民住房采光是否有影响,为什么?
(2)若要使超市采光不受影响,两楼应相距多少米?
(结果保留整数,参考数据:
)
查看答案
已知:如图,⊙O是△ABC的外接圆,且AB=AC,过点A作直线PA∥BC.
求证:PA是⊙O的切线.
查看答案
小明准备利用暑假卖报纸,在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份可赚取0.1元;如果卖出的报纸超过1000份,则超过部分每份可赚取0.2元,若小明期望获利不低于140元,问他至少要卖出多少份报纸?
查看答案
某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.
(1)用“列表法”或“树状图法”表示所有可能出现的结果;
(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?
查看答案