满分5 > 初中数学试题 >

2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买...

2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.
           型 号
金    额
投资金额x(万元)
Ⅰ型设备Ⅱ型设备
x5x24
补贴金额y(万元)y1=kx(k≠0)2y2=ax2+bx(a≠0)2.43.2
(1)分别求y1和y2的函数解析式;
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.
(1)根据图表得出函数上点的坐标,利用待定系数法求出函数解析式即可; (2)根据y=y1+y2得出关于x的二次函数,求出二次函数最值即可. 【解析】 (1)设y1=kx,将(5,2)代入得: 2=5k, 解得:k=0.4, 故y1=0.4x, 设y2=ax2+bx,将(2,2.4),(4,3.2)代入得: , 解得:a=-0.2,b=1.6, ∴y2=-0.2x2+1.6x; (2)假设投资购买Ⅰ型用x万元、Ⅱ型为(10-x)万元, y=y1+y2=0.4x-0.2(10-x)2+1.6(10-x); =-0.2x2+2.8x-4, 当x=-=7时,y==5.8万元, ∴当购买Ⅰ型用7万元、Ⅱ型为3万元时能获得的最大补贴金额,最大补贴金额为5.8万元.
复制答案
考点分析:
相关试题推荐
如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,manfen5.com 满分网
(1)求证:直线PB是⊙O的切线;
(2)求cos∠BCA的值.

manfen5.com 满分网 查看答案
如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.8米,引桥水平跨度AC=8米.
(1)求水平平台DE的长度;
(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.
(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75.)

manfen5.com 满分网 查看答案
在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.
(1)求运往两地的数量各是多少立方米?
(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?
(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:
A地B地C地
运往D地(元/立方米)222020
运往E地(元/立方米)202221
在(2)的条件下,请说明哪种方案的总费用最少?
查看答案
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
查看答案
如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.
(1)求证:∠DCP=∠DAP;
(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.