满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以...

如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t=2时,AP=______,点Q到AC的距离是______
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;
(4)当DE经过点C时,请直接写出t的值.

manfen5.com 满分网
(1)先求PC,再求AP,然后求AQ,再由三角形相似求Q到AC的距离; (2)作QF⊥AC于点F,先求BC,再用t表示QF,然后得出S的函数解析式; (3)当DE∥QB时,得四边形QBED是直角梯形,由△APQ∽△ABC,由线段的对应比例关系求得t,由PQ∥BC,四边形QBED是直角梯形,△AQP∽△ABC,由线段的对应比例关系求t; (4)①第一种情况点P由C向A运动,DE经过点C、连接QC,作QG⊥BC于点G,由PC2=QC2解得t; ②第二种情况,点P由A向C运动,DE经过点C,由图列出相互关系,求解t. 【解析】 (1)做QF⊥AC, ∵AC=3,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动, ∴当t=2时,AP=3-2=1; ∵QF⊥AC,BC⊥AC, ∴QF∥BC, ∴△ACB∽△AFQ, ∴, ∴, 解得:QF=; 故答案为:1,; (2)作QF⊥AC于点F, 如图1,AQ=CP=t, ∴AP=3-t. 由△AQF∽△ABC,BC==4, 得. ∴. ∴S=(3-t)•, 即S=; (3)能. ①当由△APQ∽△ABC,DE∥QB时,如图2. ∵DE⊥PQ, ∴PQ⊥QB,四边形QBED是直角梯形, 此时∠AQP=90°. 由△APQ∽△ABC,得, 即.解得; ②如图3,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形. 此时∠APQ=90°. 由△AQP∽△ABC,得, 即. 解得, 综上:在点E从B向C运动的过程中,当t=或时,四边形QBED能成为直角梯形; (4)t=或t=. 注:①点P由C向A运动,DE经过点C. 连接QC,作QG⊥BC于点G,如图4. ∵sinB===, ∴QG=(5-t), 同理BG=(5-t), ∴CG=4-(5-t), ∴PC=t,QC2=QG2+CG2=[(5-t)]2+[4-(5-t)]2. ∵CD是PQ的中垂线, ∴PC=QC 则PC2=QC2, 得t2=[(5-t)]2+[4-(5-t)]2, 解得t=; ②点P由A向C运动,DE经过点C,如图5. PC=6-t,可知由PC2=QC2可知, QC2=QG2+CG2=(6-t)2=[(5-t)]2+[4-(5-t)]2, 即t=.
复制答案
考点分析:
相关试题推荐
去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
查看答案
已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.
(1)求证:FD是⊙O的切线;
(2)设OC与BE相交于点G,若OG=4,求⊙O半径的长;
(3)在(2)的条件下,当OE=6时,求图中阴影部分的面积.(结果保留根号)

manfen5.com 满分网 查看答案
为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了奉市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:
manfen5.com 满分网
manfen5.com 满分网
根据以上信息解答下列问题:
(1)补全条形统计图,并计算扇形统计图中m=______
(2)该市支持选项B的司机大约有多少人?
(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?
查看答案
(1)如图1,已知AB=AC,AD=AE,∠1=∠2,求证:BD=CE.
(2)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图2所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°.然后下到城堡的C处,测得B处的俯角为30°.已知AC=40米,若灰太狼以5m/s的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?(manfen5.com 满分网≈1.73,结果精确到个位)
manfen5.com 满分网
查看答案
(1)计算:manfen5.com 满分网
(2)解不等式组:manfen5.com 满分网,并将解集在数轴上表示出来.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.