如图,在直角坐标系中,点A(0,4),B(3,4),C(6,0),动点P从点A出发以1个单位/秒的速度在y轴上向下运动,动点Q同时从点C出发以2个单位/秒的速度在x轴上向左运动,过点P作RP⊥y轴,交OB于R,连接RQ.当点P与点O重合时,两动点均停止运动.设运动的时间为t秒.
(1)若t=1,求点R的坐标;
(2)在线段OB上是否存在点R,使△ORQ与△ABC相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.
考点分析:
相关试题推荐
已知双曲线
与直线
相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线
上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线
于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.
查看答案
如图,菱形ABCD中,对角线AC、BD交于点O,AE⊥BC于E,交BD于F,
(1)求证:2AD
2=DF•DB;
(2)若BF、FD(BF<DF)是关于x的方程x
2-3mx+2m
2=0的两根,且AB=4,求菱形的面积.
查看答案
如图,已知AB是⊙O的直径,CD是弦,AB⊥CD于点M,CE交AB的延长线于点E.
(1)如果∠ECD=2∠A,求证:EC是⊙O的切线;
(2)如果CD=8cm,BM=2cm,求⊙O的半径r.
查看答案
某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价(x)定为多少元时,才能使每天所赚的利润(y)最大并求出最大利润.
查看答案
如图1,正方形AEFG的顶点E、G分别在正方形ABCD的AB、AD边上,已知AB=4cm,AG=2cm,把正方形AEFG饶点A顺时针旋转一个角度(如图2),使得G、F、B在同一直线上
(1)求旋转的最小度数,
(2)记EF与AB的交点为H,求AH的长.
查看答案