满分5 >
初中数学试题 >
下列各数中,是无理数的是( ) A.2012 B. C. D.3.14
下列各数中,是无理数的是( )
A.2012
B.
C.
D.3.14
考点分析:
相关试题推荐
操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:
说明:
方案一:图形中的圆过点A、B、C;
方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点
纸片利用率=
×100%
发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.
你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.
请帮忙计算方案二的利用率,并写出求解过程.
探究:
(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.
说明:方案三中的每条边均过其中两个正方形的顶点.
查看答案
如果抛物线C
1的顶点在抛物线C
2上,同时,抛物线C
2的顶点在抛物线C
1上,那么,我们称抛物线C
1与C
2关联.
(1)已知抛物线①y=x
2+2x-1,判断下列抛物线②y=-x
2+2x+1;③y=2x
2+2x+1与已知抛物线①是否关联,并说明理由.
(2)抛物线C
1:
,动点P的坐标为(t,2),将抛物线绕点P(t,2)旋转180°得到抛物线C
2,若抛物线C
1与C
2关联,求抛物线C
2的解析式.
查看答案
杭州市相关部门正在研究制定居民用水价格调整方案.小明想为政府决策提供信息,于是在某小区内随机访问了部分居民,就每月的用水量、可承受的水价调整的幅度等进行调查,并把调查结果整理成图1和图2.
已知被调查居民每户每月的用水量在m
3之间,被调查的居民中对居民用水价格调价幅度抱“无所谓”态度的有8户,试回答下列问题:
(1)上述两个统计图表是否完整,若不完整,试把它们补全;
(2)若采用阶梯式累进制调价方案(如表1所示),试估计该小区有百分之几的居民用水费用的增长幅度不超过50%?来
表1:阶梯式累进制调价方案
级数 | 水量基数 | 现行价格(元/立方米) | 调整后价格(元/立方米) |
第一级 | 每户每月15立方米以下(含15立方米) | 1.80 | 2.50 |
第二级 | 每户每月超出15立方米部分 | 1.80 | 3.30 |
查看答案
如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78度.李师傅的身高为1.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?
(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)
查看答案
如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
(1)请写出三条与BC有关的正确结论;
(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.
查看答案