满分5 > 初中数学试题 >

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E...

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是( )
manfen5.com 满分网
A.①②③
B.①④⑤
C.①③④
D.③④⑤
解此题的关键在于判断△DEF是否为等腰直角三角形,作常规辅助线连接CF,由SAS定理可证△CFE和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可证①正确,②错误,再由割补法可知④是正确的; 判断③,⑤比较麻烦,因为△DEF是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,DE取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的.故只有①④⑤正确. 【解析】 连接CF; ∵△ABC是等腰直角三角形, ∴∠FCB=∠A=45°,CF=AF=FB; ∵AD=CE, ∴△ADF≌△CEF; ∴EF=DF,∠CFE=∠AFD; ∵∠AFD+∠CFD=90°, ∴∠CFE+∠CFD=∠EFD=90°, ∴△EDF是等腰直角三角形. 因此①正确. 当D、E分别为AC、BC中点时,四边形CDFE是正方形. 因此②错误. ∵△ADF≌△CEF, ∴S△CEF=S△ADF∴S四边形CEFD=S△AFC, 因此④正确. 由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小; 即当DF⊥AC时,DE最小,此时DF=BC=4. ∴DE=DF=4; 因此③错误. 当△CEF面积最大时,由④知,此时△DEF的面积最小. 此时S△CDE=S四边形CEFD-S△DEF=S△AFC-S△DEF=16-8=8; 因此⑤正确. 故选B.
复制答案
考点分析:
相关试题推荐
在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处.如果AE过BC的中点,则平行四边形ABCD的面积等于( )
A.48
B.10manfen5.com 满分网
C.12manfen5.com 满分网
D.24manfen5.com 满分网
查看答案
观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则x+y的值为( )
表一
 0 1
 1 3 5 7
 2 58 11
 3 7 11 15
 
表二
15 
 19
 x
表三
 15 23
 17 y

A.45
B.46
C.48
D.49
查看答案
已知a<0,那么manfen5.com 满分网=( )
A.a
B.-a
C.3a
D.-3a
查看答案
某个样本的频数分布直方图中一共有4组,从左到右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为( )
A.6.5-9.5
B.9.5-12.5
C.8-11
D.5-8
查看答案
一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为( )
A.5
B.6
C.7
D.8
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.