满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线(b>0)分别交x轴、y轴于A、B两点,以OA、O...

如图,在平面直角坐标系中,直线manfen5.com 满分网(b>0)分别交x轴、y轴于A、B两点,以OA、OB为边作矩形OACB,D为BC的中点,以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.
(1)求点P的坐标;
(2)当b值由小到大变化过程时,求S与b的函数关系式;
(3)在b值的变化过程中,若△PCD为等腰三角形,且PC=PD,请直接写出b的值.
manfen5.com 满分网
(1)因为以M(4,0),N(8,0)为斜边端点作的等腰直角三角形PMN,点P在第一象限,所以可作PK⊥MN于K,则PK=KM=NM=2,进而可求KO=6,所以P(6,2); (2)需分情况讨论:当0<b≤2时,S=0;当2<b≤3时,重合部分是一个等腰直角三角形,可设AC交PM于H,AM=HA=2b-4,所以S=(2b-4)2;当3<b<4时,重合部分是一个四边形,因此可设AC交PN于H,四边形的面积=三角形PMN的面积-三角形HAN的面积,因为NA=HA=8-2b,所以S=-2(4-b)2+4,当b≥4时,重合部分就是直角三角形PMN,所以S=4. (3)当△PCD为等腰三角形,且PC=PD时,b=4. 【解析】 (1)如图(二),作PK⊥MN于K, ∵M(4,0),N(8,0), ∴MN=4,OM=4, 又∵△PMN是等腰三角形,MN是斜边, ∴PK=KM=NM=2, ∴KO=OM+MK=6, ∴P(6,2); (2)①当点A落在线段OM上(可与点M重合)时,如图(一),此时0<b≤2,S=0; ②当点A落在线段AK上(可与点K重合)时,如图(二),此时2<b≤3,设AC交PM于H,MA=AH=2b-4, ∴S=(2b-4)2=2b2-8b+8, ③当点A落在线段KN上(可与点N重合)时,如图(三),此时3<b≤4,设AC交PN于H,AN=AH=8-2b, ∴S=S△PMN-S△ANH=4-2(4-b)2=-2b2+16b-28, ④当点A落在线段MN的延长线上时,b>4,如图(四),S=4; (3)b的值为4. ∵点C、D的坐标分别为(2b,b),(b,b),PC=PD,P(6,2), ∴(6-2b)2+(2-b)2=(6-b)2+(2-b)2 ∴b=4.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO

manfen5.com 满分网 查看答案
某边防部接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶.在追赶过程中,设快艇B相对于海岸的距离为y1(海里),可疑船只A相对于海岸的距离为y2(海里),追赶时间为t(分钟),图中lA、lB分别表示y2、y1与t之间的关系.结合图象回答下列问题:
(1)请你根据图中标注的数据,分别求出y1、y2与t之间的函数关系式,并写出自变量的取值范围;
(2)15分钟内B能否追上A?说明理由;
(3)已知当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度计算,B能否在A逃入公海前将其拦截?

manfen5.com 满分网 查看答案
已知:如图,等边三角形ABC的边长为4,以它的一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)求DF的长;
(3)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:
(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;
(2)在点A和大树之间选择一点B(A,B,D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;
(3)量出A,B两点间的距离为4.5米.
请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

manfen5.com 满分网 查看答案
如图,正比例函数y=kx和反比例函数manfen5.com 满分网的图象都经过点A(3,3),将直线y=kx向下平移后得直线l,设直线l与反比例函数的图象的一个分支交于点B(6,n).
(1)求n的值;
(2)求直线l的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.