满分5 > 初中数学试题 >

等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点...

等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.
(1)如图1,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;
(2)在(1)问的条件下,FE、PB的延长线交于点G,如图2,求△EGB的面积;
(3)在三角板旋转过程中,若CF=AE=2,(CF≠BP),如图3,求PE的长.
manfen5.com 满分网
(1)要证三角形EPF是等边三角形,已知了∠EPF=60°,主要再证得PE=PF即可,可通过证三角形PBE和PFC全等来得出结论,再证明全等过程中,可通过证明FP⊥BC和BE=PC来实现; (2)由(1)不难得出∠CFG=90°,那么在三角形CFG中,有∠C的度数,可以根据CF的长求出GC的长,从而求出GB的长,下面的关键就是求GB边上的高,过E作EH⊥BC,那么EH就是所求的高,在直角三角形BEP中,有BP的长,有∠ABC的度数,可以求出BE、EP的长,再根据三角形面积的不同表示方法求出EH的长,这样有了底和高就能求出△GBE的面积; (3)由相似三角形的判定定理得出△BPE∽△CFP,设BP=x,则CP=6-x,由相似三角形的对应边成比例可求出x的值,再根据勾股定理求出PE的值即可. 【解析】 (1)∵PE⊥AB,∠B=60°, 因此直角三角形PEB中,BE=BP=BC=PC, ∴∠BPE=30°, ∵∠EPF=60°, ∴FP⊥BC, ∵∠B=∠C=60°,BE=PC,∠PEB=∠FPC=90°, ∴△BEP≌△CPF, ∴EP=PF, ∵∠EPF=60°, ∴△EPF是等边三角形. (2)过E作EH⊥BC于H, 由(1)可知:FP⊥BC,FC=BP=BC=4,BE=CP=BC=2, 在三角形FCP中,∠PFC=90°-∠C=30°, ∵∠PFE=60°, ∴∠GFC=90°, 直角三角形FGC中,∠C=60°,CF=4, ∴GC=2CF=8, ∴GB=GC-BC=2, 直角三角形BEP中∠EBP=60°,BP=4, ∴PE=2,BE=2, ∴EH=BE•PE÷BP=, ∴S△GBE=BG•EH=; (3))∵在△BPE中,∠B=60°, ∴∠BEP+∠BPE=120°, ∵∠EPF=60°, ∴∠BPE+∠FPC=120°, ∴∠BEP=∠FPC, 又∵∠B=∠C, ∴△BPE∽△CFP, ∴, 设BP=x,则CP=6-x. ∴=, 解得:x=2或4. 当x=2时,在三角形△BEP中,∠B=60°,BE=4,BP=2, 过E作EH⊥BC于H, 则EH=BE•sin∠B=2,BH=2, ∴PH=0, 即P与H重合,与CF≠BP矛盾,故x=2不合题意,舍去; 当x=4时,在三角形△BEP中,∠B=60°,BE=4,BP=4, 则△BEP是等边三角形, ∴PE=4. 故PE=4.
复制答案
考点分析:
相关试题推荐
阅读下面的文字,回答后面的问题:求5+52+53+…+5100的值.
【解析】
令S=5+52+53+…+5100(1),将等式两边同时乘以5得到:5S=52+53+54+…+5101(2),
(2)-(1)得:4S=5101-5,∴manfen5.com 满分网
问题:(1)求2+22+23+…+2100的值;(2)求4+12+36+…+4×340的值.
查看答案
如图,在一正方形ABCD中.E为对角线AC上一点,连接EB、ED,
(1)求证:△BEC≌△DEC:
(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.

manfen5.com 满分网 查看答案
如图,已知⊙O的半径为2,弦BC的长为2manfen5.com 满分网,点A为弦BC所对优弧上任意一点(B,C两点除外).
(1)求∠BAC的度数;
(2)求△ABC面积的最大值.
(参考数据:sin60°=manfen5.com 满分网,cos30°=manfen5.com 满分网,tan30°=manfen5.com 满分网.)

manfen5.com 满分网 查看答案
某单位于“三•八”妇女节期间组织女职工到温泉“星星竹海”观光旅游.下面是邻队与旅行社导游收费标准的一段对话:
邻队:组团去“星星竹海”旅游每人收费是多少?
导游:如果人数不超过25人,人均旅游费用为100元.
邻队:超过25人怎样优惠呢?
导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.
该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2700元.
请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人?
查看答案
为迎接2011年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息,解答下列问题:
manfen5.com 满分网
(1)请将表示成绩类别为“中”的条形统计图补充完整;
(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是______度;
(3)学校九年级共有1000人参加了这次数学考试,估算该校九年级共有多少名学生的数学成绩可以达到优秀?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.