满分5 > 初中数学试题 >

如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (...

如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

manfen5.com 满分网
(1)根据题意可知,将点A、B代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式; (2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ最小,所以此题的关键是确定点Q的位置,找到点A的对称点B,求得直线BC的解析式,求得与对称轴的交点即是所求; (3)存在,设得点P的坐标,将△BCP的面积表示成二次函数,根据二次函数最值的方法即可求得点P的坐标. 【解析】 (1)将A(1,0),B(-3,0)代y=-x2+bx+c中得 (2分) ∴(3分) ∴抛物线解析式为:y=-x2-2x+3;(4分) (2)存在(5分) 理由如下:由题知A、B两点关于抛物线的对称轴x=-1对称 ∴直线BC与x=-1的交点即为Q点,此时△AQC周长最小 ∵y=-x2-2x+3 ∴C的坐标为:(0,3) 直线BC解析式为:y=x+3(6分) Q点坐标即为 解得 ∴Q(-1,2);(7分) (3)存在.(8分) 理由如下:设P点(x,-x2-2x+3)(-3<x<0) ∵S△BPC=S四边形BPCO-S△BOC=S四边形BPCO- 若S四边形BPCO有最大值,则S△BPC就最大, ∴S四边形BPCO=S△BPE+S直角梯形PEOC(9分) =BE•PE+OE(PE+OC) =(x+3)(-x2-2x+3)+(-x)(-x2-2x+3+3) = 当x=-时,S四边形BPCO最大值= ∴S△BPC最大=(10分) 当x=-时,-x2-2x+3= ∴点P坐标为(-,).(11分)
复制答案
考点分析:
相关试题推荐
某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售.
(1)请建立销售价格y(元)与周次x之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为z=-manfen5.com 满分网(x-8)2+12,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?
查看答案
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2manfen5.com 满分网,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在天一阁查阅资料的时间为______分钟,小聪返回学校的速度为______千米/分钟;
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?

manfen5.com 满分网 查看答案
如图,小芸在自家楼房的窗户A处,测量楼前的一棵树CD的高.现测得树顶C处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为20米.请你帮助小芸计算树的高度(精确到0.1米).

manfen5.com 满分网 查看答案
先化简,再求值manfen5.com 满分网,其中x=3.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.