满分5 > 初中数学试题 >

正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时...

正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.

manfen5.com 满分网
(1)要证三角形ABM和MCN相似,就需找出两组对应相等的角,已知了这两个三角形中一组对应角为直角,而∠BAM和∠NMC都是∠AMB的余角,因此这两个角也相等,据此可得出两三角形相似. (2)根据(1)的相似三角形,可得出AB,BM,MC,NC的比例关系式,已知了AB=4,BM=x,可用BC和BM的长表示出CM,然后根据比例关系式求出CN的表达式.这样直角梯形的上下底和高都已得出,可根据梯形的面积公式得出关于y,x的函数关系式.然后可根据函数的性质得出y的最大值即四边形ABCN的面积的最大值,以及此时对应的x的值,也就可得出BM的长. (3)已知了这两个三角形中相等的对应角是∠ABM和∠AMN,如果要想使Rt△ABM∽Rt△AMN,那么两组直角边就应该对应成比例,即,根据(1)的相似三角形可得出,因此BM=MC,M是BC的中点.即x=2. (1)证明:在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°, ∵AM⊥MN, ∴∠AMN=90°, ∴∠CMN+∠AMB=90°. 在Rt△ABM中,∠MAB+∠AMB=90°, ∴∠CMN=∠MAB, ∴Rt△ABM∽Rt△MCN. (2)【解析】 ∵Rt△ABM∽Rt△MCN, ∴,即, ∴, ∴y=S梯形ABCN=(+4)•4 =-x2+2x+8 =-(x-2)2+10, 当x=2时,y取最大值,最大值为10. (3)【解析】 ∵∠B=∠AMN=90°, ∴要使△ABM∽△AMN,必须有, 由(1)知, ∴=, ∴BM=MC, ∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.
复制答案
考点分析:
相关试题推荐
某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
 AB
成本(万元/套)2528
售价(万元/套)3034
(1)该公司对这两种户型住房有哪几种建房方案?
(2)该公司如何建房获得利润最大?
(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
注:利润=售价-成本.
查看答案
如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.
(1)求证:DB平分∠ADC;
(2)若BE=3,ED=6,求AB的长.

manfen5.com 满分网 查看答案
某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用6天;
(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.
试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
查看答案
如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)画AD∥BC(D为格点),连接CD;
(2)线段CD的长为______

manfen5.com 满分网 查看答案
国家统计局根据联合国粮农组织数据库资料对我国四种主要农产品进行分析,四种农产品当年占世界总产量的百分比如下表所示:
指    标1978年2000年2007年
稻谷产量36.531.728.7
小麦产量12.217.118.1
玉米产量14.317.919.4
大豆产量10.19.67.3
(1)求四种农产品占世界总量的平均百分比;
(2)在四种农产品中,哪种农产品与世界总量的比值波动最大?
(3)根据你对中国国情的了解,依据表中的数据,你对我国的农业发展前景有何建议?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.