满分5 > 初中数学试题 >

聪明好学的小云查阅有关资料发现:用不过圆锥顶点平行于一条母线的平面截圆锥所得的截...

聪明好学的小云查阅有关资料发现:用不过圆锥顶点平行于一条母线的平面截圆锥所得的截面为抛物面,即图1中曲线CFD为抛物线的一部分,如图1,圆锥体SAB的母线长为10,侧面积为50π,圆锥的截面CFD交母线SB于F,交底面⊙P于C、D,AB⊥CD于O,OF∥SA且OF⊥CD,OP=4,OB=9.
(1)求底面圆的半径AP的长及圆锥侧面展开图的圆心角的度数;
(2)当以CD所在直线为x轴,OF所在的直线为y轴建立如图2所示的直角坐标系,求过C、F、D三点的抛物线的函数关系式.
manfen5.com 满分网
(1)根据圆锥侧面积的计算方法即可求得底面圆半径AP的长;由于圆锥侧面展开图是个扇形,且弧长等腰底面圆的周长,可据此求出侧面展开图的圆心角的度数; (2)根据(1)得出的底面圆的半径即可得到BO、AB的长,由于OF∥AS,易证得△OBF∽△ABS,根据相似三角形所得到的比例线段即可求得OF的长,由此可得到F点的坐标;连接AC、BC;根据圆周角定理知∠ACB=90°,在Rt△ACB中,OC⊥AB,根据射影定理即可求出OC的长,由此可得到C点的坐标;根据C、F的坐标,即可用待定系数法求出抛物线的解析式. 【解析】 (1)∵50π=π•AP•10 ∴AP=5; ∵2π•5= ∴n=180°; 故底面圆的半径长为5,侧面展开图的圆心角的度数为180°; (2)由OF∥SA得△OFB∽△ASB, ∴=, ∴= ∴OF=9, ∴F(0,9); 连接AC,BC,则∠ACB=90°; Rt△ABC中,OC⊥AB,OA=1,OB=9; 由射影定理可得CO2=1×9, ∴CO=3, ∴C(-3,0); 设抛物线的解析式为:y=ax2+c,则有: , 解得; ∴抛物线的解析式为:y=-x2+9.
复制答案
考点分析:
相关试题推荐
如图,在△ABD和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G
(1)试判断线段BC、DE的数量关系,并说明理由;
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?为什么?

manfen5.com 满分网 查看答案
2012年,全国两会召开,“雷锋精神”成了两会热议的新话题.为了让学生进一步学习“雷锋精神”,部分学校的八年级学生对待学习雷锋精神的态度进行了一次抽样调查(把学习态度分为三个层级,A级:很感兴趣;B级:较感兴趣;C级:不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了______名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?

manfen5.com 满分网 查看答案
如图,两条直线的交点可看作是方程组的解,请用你所学的知识求出这个方程组.

manfen5.com 满分网 查看答案
①存在两个不同的无理数,它们的积是整数; ②存在两个不同的无理数,它们的差是非零整数; ③存在两个不同的非整数的有理数,它们的和与商都是整数.先判断这3个结论分别是正确还是错误的,如果正确,请举出符合结论的两个数.
查看答案
如图,在直角坐标系中,已知点P的坐标为(1,0),将线段OP按逆时针方向旋转45°,再将其长度伸长为OP的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,OPn(n为正整数),则点P6的坐标是    ;△P5OP6的面积是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.