如图1,已知:抛物线y=
x
2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=
x-2,连接AC.
(1)B、C两点坐标分别为B(______,______)、C(______,______),抛物线的函数关系式为______;
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.
考点分析:
相关试题推荐
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.
(1)求证:直线AB是⊙O的切线;
(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;
(3)若tan∠CED=
,⊙O的半径为3,求OA的长.
查看答案
如图,梯形ABCD中,AD∥BC,BC=3AD,M、N为底边BC的三等分点,连接AM,DN.
(1)求证:四边形AMND是平行四边形;
(2)连接BD、AC,AM与对角线BD交于点G,DN与对角线AC交于点H,且AC⊥BD.试判断四边形AGHD的形状,并证明你的结论.
查看答案
某电脑公司现有A、B、C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.
(1)写出所有选购方案(利用树状图或列表方法表示);
(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?
(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.
查看答案
如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F
(1)求证:CE=CF.
(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.
查看答案
先化简,再求值:
,其中x=
+1.
查看答案