满分5 > 初中数学试题 >

如图1,已知:抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过...

如图1,已知:抛物线y=manfen5.com 满分网x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=manfen5.com 满分网x-2,连接AC.
(1)B、C两点坐标分别为B(____________)、C(____________),抛物线的函数关系式为______
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.
manfen5.com 满分网
(1)令x=0以及y=0代入y=x-2得出B,C的坐标.把相关坐标代入抛物线可得函数关系式. (2)已知AB,AC,BC的值,根据反勾股定理可证明△ABC是直角三角形. (3)证明△CGF∽△CAB,利用线段比求出有关线段的值.求出S矩形DEFG的最大值.再根据△ADG∽△AOC的线段比求解. 【解析】 (1)令x=0,y=-2, 当y=0代入y=x-2得出:x=4, 故B,C的坐标分别为: B(4,0),C(0,-2).(2分) y=x2-x-2.(4分) (2)△ABC是直角三角形.(5分) 证明:令y=0,则x2-x-2=0. ∴x1=-1,x2=4. ∴A(-1,0).(6分) 解法一:∵AB=5,AC=,BC=2.(7分) ∴AC2+BC2=5+20=25=AB2. ∴△ABC是直角三角形.(8分) 解法二:∵AO=1,CO=2,BO=4, ∴ ∵∠AOC=∠COB=90°, ∴△AOC∽△COB.(7分) ∴∠ACO=∠CBO. ∵∠CBO+∠BCO=90°, ∴∠ACO+∠BCO=90度. 即∠ACB=90度. ∴△ABC是直角三角形.(8分) (3)能.①当矩形两个顶点在AB上时,如图1,CO交GF于H. ∵GF∥AB, ∴△CGF∽△CAB. ∴.(9分) 解法一:设GF=x,则DE=x, CH=x,DG=OH=OC-CH=2-x. ∴S矩形DEFG=x•(2-x)=-x2+2x=-(x-)2+.(10分) 当x=时,S最大. ∴DE=,DG=1. ∵△ADG∽△AOC, ∴, ∴AD=, ∴OD=,OE=2. ∴D(-,0),E(2,0).(11分) 解法二:设DG=x,则DE=GF=. ∴S矩形DEFG=x•=-x2+5x=-(x-1)2+.(10分) ∴当x=1时,S最大. ∴DG=1,DE=. ∵△ADG∽△AOC, ∴, ∴AD=, ∴OD=,OE=2. ∴D(-,0),E(2,0).(11分) ②当矩形一个顶点在AB上时,F与C重合,如图2, ∵DG∥BC, ∴△AGD∽△ACB. ∴. 解法一:设GD=x, ∴AC=,BC=2, ∴GF=AC-AG=-. ∴S矩形DEFG=x•(-)=-x2+x =-(x-)2+.(12分) 当x=时,S最大.∴GD=,AG=, ∴AD=. ∴OD=∴D(,0)(13分) 解法二:设DE=x, ∵AC=,BC=2, ∴GC=x,AG=-x. ∴GD=2-2x. ∴S矩形DEFG=x•(2-2x)=-2x2+2x=-2(x-)2+(12分) ∴当x=时,S最大, ∴GD=,AG=. ∴AD=. ∴OD= ∴D(,0)(13分) 综上所述:当矩形两个顶点在AB上时,坐标分别为(-,0),(2,0) 当矩形一个顶点在AB上时,坐标为(,0).(14分)
复制答案
考点分析:
相关试题推荐
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.
(1)求证:直线AB是⊙O的切线;
(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;
(3)若tan∠CED=manfen5.com 满分网,⊙O的半径为3,求OA的长.

manfen5.com 满分网 查看答案
如图,梯形ABCD中,AD∥BC,BC=3AD,M、N为底边BC的三等分点,连接AM,DN.
(1)求证:四边形AMND是平行四边形;
(2)连接BD、AC,AM与对角线BD交于点G,DN与对角线AC交于点H,且AC⊥BD.试判断四边形AGHD的形状,并证明你的结论.

manfen5.com 满分网 查看答案
某电脑公司现有A、B、C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.
(1)写出所有选购方案(利用树状图或列表方法表示);
(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?
(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.

manfen5.com 满分网 查看答案
如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F
(1)求证:CE=CF.
(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.
manfen5.com 满分网
查看答案
先化简,再求值:manfen5.com 满分网,其中x=manfen5.com 满分网+1.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.