如图1,直线y=x+3与x轴、y轴分别交于点A、点C,经过A、C两点的抛物线y=ax
2+bx+c与x轴的另一交点为B,顶点P的横坐标为-2.
(1)求该抛物线的解析式;
(2)连接BC,得△ABC.若点D在x轴上,且以点P、B、D为顶点的三角形与△ABC相似,求出点P的坐标并直接写出此时△PBD外接圆的半径;
(3)设直线l:y=x+t,若在直线l上总存在两个不同的点E,使得∠AEB为直角,则t的取值范围是______
考点分析:
相关试题推荐
已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.
查看答案
如图,正方形OEFG绕着边长为12的正方形ABCD的对角线的交点O旋转,边OE、OG分别交边AD、AB于点M、N.
(1)求证:OM=ON;
(2)设正方形OEFG的对角线OF与边AB相交于点P,连接PM.若PM=5,试求AM的长;
(3)连接MN,求线段MN长度的最小值,并指出此时线段MN与线段BD的关系.
查看答案
如图,点A,B,C,D是直径为AB的⊙O上四个点,C是劣弧
的中点,AC交BD于点E,AE=2,EC=1.
(1)求证:△DEC∽△ADC;
(2)试探究四边形ABCD是否是梯形?若是,请你给予证明并求出它的面积;若不是,请说明理由.
(3)延长AB到H,使BH=OB.求证:CH是⊙O的切线.
查看答案
某一特殊路段规定:汽车行驶速度不超过36千米/时.一辆汽车在该路段上由东向西行驶,如图所示,在距离路边10米O处有一“车速检测仪”,测得该车从北偏东60°的A点行驶到北偏东30°的B点,所用时间为1秒.
(1)试求该车从A点到B点的平均速度.
(2)试说明该车是否超速.(
、
)
查看答案
某班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.
训练后篮球定时定点投篮测试进球数统计表
请你根据图表中的信息回答下列问题:
(1)选择长跑训练的人数占全班人数的百分比是______,该班共有同学______人;
(2)训练后篮球定时定点投篮测试进球数的中位数是______个;
(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练前人均进球数增加25%.试求出参加训练前的人均进球数.
查看答案