满分5 > 初中数学试题 >

如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线...

如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是( )
manfen5.com 满分网
A.DE=DO
B.AB=AC
C.CD=DB
D.AC∥OD
根据AB=AC,连接AD,利用圆周角定理可以得到点D是BC的中点,OD是△ABC的中位线,OD∥AC,然后由DE⊥AC,得到∠ODE=90°,可以证明DE是⊙O的切线. 根据CD=BD,AO=BO,得到OD是△ABC的中位线,同上可以证明DE是⊙O的切线. 根据AC∥OD,AC⊥DE,得到∠EDO=90°,可以证明DE是⊙O的切线. 【解析】 当AB=AC时,如图:连接AD, ∵AB是⊙O的直径, ∴AD⊥BC, ∴CD=BD, ∵AO=BO, ∴OD是△ABC的中位线, ∴OD∥AC, ∵DE⊥AC, ∴DE⊥OD, ∴DE是⊙O的切线. 所以B正确. 当CD=BD时,AO=BO,∴OD是△ABC的中位线, ∴OD∥AC ∵DE⊥AC ∴DE⊥OD ∴DE是⊙O的切线. 所以C正确. 当AC∥OD时,∵DE⊥AC,∴DE⊥OD. ∴DE是⊙O的切线. 所以D正确. 故选A.
复制答案
考点分析:
相关试题推荐
若a、b均为正整数,且manfen5.com 满分网,则a+b的最小值是( )
A.3
B.4
C.5
D.6
查看答案
若一次函数y=(2-m)x-2的函数值y随x的增大而减小,则m的取值范围是( )
A.m<0
B.m>0
C.m<2
D.m>2
查看答案
如图,直线y=-manfen5.com 满分网x+3分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,设运动时间为t秒.
(1)直接填出两点的坐标:A:______,B:______
(2)过点P作直线截△ABO,使截得的三角形与△ABO相似,若当P在某一位置时,满足条件的直线共有4条,t的取值范围是______
(3)如图,过点P作x轴的垂线交直线AB于点C,设以C为顶点的抛物线 y=(x+m)2+n与直线AB的另一交点为D,
①用含t的代数式分别表示m=______,n=______
②随着点P运动,CD的长是否为定值?若是,请求出CD长;若不是,说明理由;
③设△COD的OC边上的高为h,请直接写出当t为何值时,h的值最大?

manfen5.com 满分网 查看答案
已知:α,β(α>β)是一元二次方程x2-x-3=0的两个实数根,设S1=α+β,S222,…,Snnn.根据根的定义,有α2-α-3=0,β2-β-3=0将两式相加,得(α22)-(α+β)-6=0,于是,得S2-Sl-6=0.
根据以上信息,解答下列问题:
(1)利用配方法求α,β的值,并直接写出S1,S2的值;
(2)求出S3的值,并猜想:当n≥3时,Sn,Sn-1,Sn-2.之间满足的数量关系为______
(3)直接填出 manfen5.com 满分网的值为______
查看答案
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润B型利润
甲店200170
乙店160150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.